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Abstract

Cell membranes display a range of receptors that bind ligandsand activate signaling path-

ways. Signaling is characterized by dramatic changes in membrane molecular topography,

including the co-clustering of receptors with signaling molecules and the segregation of

other signaling molecules away from receptors. Electron microscopy of immunogold-

labeled membranes is a critical technique to generate topographical information at the

5-10 nm resolution needed to understand how signaling complexes assemble and function.

However, due to experimental limitations, only two molecular species can usually be la-

beled at a time. A formidable challenge is to integrate experimental data across multiple

experiments where there are from 10 to 100 different proteins and lipids of interest and

only the positions of two species can be observed simultaneously. As a solution, Markov

random field (MRF) modeling is proposed to reconstruct the distribution of multiple cell

membrane constituents from pair-wise data sets. MRFs are a powerful mathematical for-

malism for modeling correlations between states associated with neighboring sites in spa-
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tial lattices. The presence or absence of a protein of a specific type at a point on the cell

membrane is a state. Since only two protein types can be observed, i.e., those bound to

particles, and the rest cannot be observed, the problem is one of deducing the conditional

distribution of a MRF with unobservable (hidden) states. Here, a multiscale MRF model

has been developed and mathematical programming techniques have been used to infer the

conditional distribution of a MRF for proteins of three typesfrom observations showing

the spatial relationships between only two types. Application to synthesized data shows

that the spatial distributions of three proteins can be reliably estimated. Application to ex-

perimental data provides the first maps of the spatial relationship between groups of three

different signaling molecules. Initially, a 4-neighborhood system was used in the MRF

modeling. In order to improve reconstruction quality, a larger 8-neighborhood system was

subsequently used in a multiscale Gibbs random field (GRF) formulation by exploiting the

Markov-Gibbs equivalence. Application of the multiscale GRF model to synthesized and

experimental data shows that the quality of reconstructionis improved. This work is an

important step towards a more complete understanding of membrane spatial organization

and dynamics during signaling.
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Chapter 1

Introduction

Cell membranes display a range of receptors that bind signaling molecules and initiate

transmembrane responses. Receptors and the signaling proteins and lipids they activate

are distributed non-randomly in membranes; in addition, receptor activation is accompa-

nied by dramatic reorganization of membrane components as well as by recruitment of

new signaling proteins from the cytoplasm to the membrane [42, 44]. Strict regulation

of signal transduction from the outer cell surface to the cytoplasm and nucleus is crucial

for cell survival, differentiation, proliferation and other activities. Unregulated signaling

is an important component in the pathogenesis of many diseases, including cancer. Nev-

ertheless, many aspects of how the cell maintains spatio-temporal control of signaling

pathways remain unclear. Correlating the activities of receptors and signaling proteins

and lipids with their spatial distribution and dynamics is essential to better understand the

regulation of cell signaling.

To observe the topographical events associated with cell signaling, several groups have

generated high resolution spatial maps of colloidal gold particles marking receptors and

signaling proteins and lipids in native membranes [22, 33, 34, 40, 42, 43, 44, 45, 47]. In

this technique, cell monolayers adherent to glass coverslips are inverted onto nickel elec-
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tron microscopy grids that are precoated with a highly charged polymer, poly-L-lysine.

Pressure is applied briefly, and then the coverslips are lifted, leaving cytoplasmic face-

up sheets of native membranes (see Figure 1.1). The sheets are fixed lightly, and la-

beled with nanometer-sized electron-dense probes that have been functionalized, usually

with antibodies, to recognize specific signaling molecules. After labeling, membranes

are fixed more completely, counterstained with osmium and uranyl acetate to label fea-

tures of the cell membrane like coated pits, air-dried, and imaged using transmission

electron microscopy (TEM). The TEM images are digitized andprobe coordinates are

extracted. The spatial distributions of the probes with respect to each other and with re-

spect to membrane features such as clathrin-coated pits andcaveolae are subsequently

analyzed [17, 30, 31, 49]. In general, due to limitations of applicable gold particle size,

only two different protein species can be labeled with confidence in the same experiment

(Figure 1.2). Experimentalists are exploring the use of newmetal, semi-conductor, and

ceramic electron-dense nanoprobes with different shapes to expand the number of probes

than can be discriminated [1, 18]. However, even with these new tools, the limited avail-

ability of antibodies raised in different species to label signal pathway components makes

it difficult to substantially expand the number of probes that can be used in a single ex-

periment. Consequently, there is a need to integrate experimental data across multiple

experiments. In this dissertation, Markov random field (MRF)modeling is used to address

this problem.

MRFs provide a powerful and robust framework for modeling correlations between

states associated with neighboring sites in spatial lattices. The first concept of MRF came

from the physicist Ernst Ising in the 1920s [23]. Ising triedto devise a mathematical model

to explain the experimental properties of ferromagnetic materials. In his model, Ising

made the simplifying assumption that only interactions between neighboring bipoles need

be taken into account. Since the 1980s, MRFs have been become useful in several areas

of image analysis such as texture synthesis [9, 12, 32], image restoration [4, 14], image

segmentation [11] and surface reconstruction [13]. The success of MRFs can be attributed

2
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EM Grid

Coverslip

Plasma
Membrane
on EM Grid

A B
C

Figure 1.1: a) Lower the EM grid onto the cell on the coverslip; b) remove the EM grid;
c) produce fragments of the plasma membrane on the grid.

to their versatility as stochastic image models and to the fact that the Hammersley-Clifford

theorem [3] provides a simple way of specifying the joint probability distribution.

The goal of image modeling is to find a good representation of the gray level distri-

bution of a given image. What is good often depends on the task at hand. In most of the

work on MRF modeling in image processing, a key assumption is that the information

contained in the local structure of images is sufficient to obtain a good image representa-

tion. The local information is captured by a conditional probability distribution because

the image gray level at a particular site depends only on its neighboring pixels. There are

usually two ingredients in the MRF image modeling: theprior andobservationprocess.

The prior process,X, is a model of the unobserved original image.X is defined on the set

of image attributes that are of interest. For example, in edge preserving image restoration,

X includes image gray levels and binary-valued edge labels. In texture segmentation,X

includes image gray levels and texture labels. The observation process,Y , is a model of

the given image which is a noisy, blurred, or incomplete version of the original image. The

MRF modeling fits well into a Bayesian estimation/inference paradigm, where Bayes’ the-

orem is invoked to obtain the posterior probability distribution of the original image given

the observation, and where a form of Bayesian estimation, maximum a posterioriestima-

3
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Figure 1.2: 5nm and 10nm gold probes in the image of a TEM slide.

tion, is used to restore or to segment images.

The spatial distributions of proteins on cell membranes aredetermined by the under-

lying physical and chemical interactions, including protein-protein and protein-lipid inter-

actions. Usually, these interactions decrease quickly as distance increases. In other words,

these interactions are local. Therefore, local characteristics are a good representation of

protein spatial distributions which are determined by local interactions. As a result, MRFs

are a good choice to characterize protein spatial distributions. Cell membranes can be

4
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modeled as a 2D lattice, and the presence or absence of a protein of a specific type at a

point on the cell membrane is a state. Since only two protein types can be observed,i.e.,

those bound to particles, and the rest cannot be observed, the problem is one of deduc-

ing the conditional probability distribution of a MRF with unobservable (hidden) states.

A question of significant importance is: What fraction of the conditional probability dis-

tribution of the MRF modeling spatial relationships betweenproteins of all types can be

inferred from particle preparations showing the spatial relationships between only two

types? If the conditional probability distribution can be reliably estimated, then the Gibbs

sampler [14] can be used to synthesize sample MRFs allowing the complete set of protein

spatial relationships to be visualized.

The organization of this dissertation is as follows. Chapter2 gives a brief introduction

to MRF theory and Bayesian image analysis. It also reviews related work. In Chapter

3, a quadruple stochastic model for modeling the protein spatial distributions is first de-

scribed, and then first-order and second-order Markov chains are used to demonstrate that

the quadruple model is feasible. It then presents how the conditional probability distri-

bution of a MRF for proteins of three types can be deduced from observations showing

the spatial relationships between only two types. However,the neighborhood system of

the MRF used in Chapter 3 is too small to obtain good results on experimental data. To

solve this problem, a multiscale MRF model is developed in Chapter 4. Application of

the multiscale MRF model to synthesized and experimental data gives satisfactory results.

In Chapter 5, the Markov-Gibbs equivalence is exploited to utilize a larger neighborhood

system in the modeling. Results of applying the GRF models to the synthesized and exper-

imental data are then presented. Finally, Chapter 6 concludesand discusses future research

directions.
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Chapter 2

Background and Related Work

2.1 Markov Random Field

MRFs have several components: a latticeS with m sitess; a neighborhood systemN =

{Ns|s ∈ S}, whereNs is the subset of sites inS which are the neighbors ofs; a field of

random variablesX = {Xs|s ∈ S}, and a conditional probability mass function (p.m.f.),

P (Xs = xs|Xt = xt, t ∈ Ns). Each random variableXs takes a value in a finite set

Q = {l1, . . . , lq} of possible states.Xs = xs denotes the event thatXs takes the value

xs and (X1 = x1, X2 = x2, · · · , Xm = xm) denotes a joint event. The joint event is

abbreviated asX = x in which x = {x1, x2, · · · , xm} is a realization ofX. Therefore,

there is also a joint p.m.f.,P (X = x). Either the conditional p.m.f. or the joint p.m.f. can

be used to specify a MRF. The Markov property means that the state at a site is dependent

only on those at its neighboring sites:

P (Xs = xs|Xt = xt, t 6= s, t ∈ S) = P (Xs = xs|Xt = xt, t ∈ Ns). (2.1)

For example, the neighbor set ofs = (i, j) for a regular latticeS is commonly defined as

Ns = {r = (k, l) ∈ S : 0 < (k − i)2 + (l − j)2 ≤ o}, (2.2)

6
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whereo is the order of the neighborhood system. Figure 2.1 a)-c) show the neighborhood

systems foro = 1, 2 and8. Alternatively, a neighborhood system can also be represented

by the number of neighbors in it. For example, a first-order neighborhood can also be

called a 4-neighborhood.

Figure 2.1: MRF neighborhood systems for sites ∈ S: a) 4-neighborhood; b) 8-
neighborhood; and c) 24-neighborhood [26].

MRFs are often formulated asGibbs Random Fields(GRFs), which are equivalent to

MRFs by the Hammersley-Clifford theorem [3]. In Section 5.1, we give a brief introduc-

tion to Gibbs random fields.

2.2 Bayesian Image Analysis

When MRFs are used to model images, Bayesian methods are often used in image analy-

sis [19, 14, 11]. The Bayesian approach has benefits in image analysis and interpretation

because it permits the use of prior knowledge concerning thesituation under study. Here,

a brief introduction to Bayesian image analysis is given.

7
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2.2.1 Bayes’ Theorem

Bayesian methods are based on Bayes’ theorem (also known as Bayes’ rule or Bayes’

law), which defines the relationship between the conditional and marginal probability dis-

tributions of two random variables. Let us consider the basic set-up in the context of image

restoration, an original image described by a random process X, and a given image rep-

resented by another random processY . The original image is not observable; it can only

be observed through the given image which is a noisy or blurred version of the original.

We want to restore the original image from the given image. Bayes’ theorem relates their

conditional and marginal probabilities as follows:

P (X|Y ) =
P (Y |X)P (X)

P (Y )
. (2.3)

P (X) is theprior probability ofX because it does not take into account any information

aboutY . P (X|Y ) is called theposteriorprobability because it depends on the specified

value ofY . P (Y |X) is called thelikelihood of Y with respect toX, indicating that the

valuex for which P (Y = y|X = x) is large is more “likely” to be the true value.P (Y )

is theevidencefactor and can be viewed as a normalizing constant. With thisterminology,

the Bayes’ theorem can be informally expressed as:

posterior =
likelihood × prior

evidence
. (2.4)

In words, the posterior probability is proportional to the product of the prior probability

and the likelihood. Bayes’s theorem provides the means that we can update or revise our

knowledge ofX in light of new information ofY , both expressed in terms of a probability

distribution. For more detailed materials on Bayesian theory, the reader is referred to [2].

2.2.2 Bayesian Analysis

The first aspect of Bayesian analysis involves the choice of the prior. In one interpretation

of Bayes’ theorem, the priorP (X) represents general information about the processX,

8



www.manaraa.com

Chapter 2. Background and Related Work

i.e., the prior might be viewed as a way to restrictX so that the posterior provides more

information aboutX than the likelihood. In this case, many different priors canbe used

in the analysis to investigate the range of possible outcomes and the proper choice for the

prior depends on the problem domain. In Bayesian image analysis, MRFs are often used

as prior models.

The second aspect of Bayesian analysis deals with the use of the posterior probability.

When attempting to summarize the results of an analysis, it might be necessary to repre-

sentP (X|Y ) in more concise terms. In the process of interpretation, some information

concerningP (X|Y ) is lost. To achieve an optimal way to interpret the posteriorprobabil-

ity, the Bayesian approach associates the costs with making various kinds of errors in the

interpretation process. The assignment of the proper cost function is usually a part of spec-

ifying the problem. When any answer other than the correct onehas the same increased

cost, the estimate is the value ofX that maximizes the posterior probability distribution:

X̂ = argmax P (X|Y ). (2.5)

This is the well-known maximuma posteriori (MAP) estimation. Since the paper of

Geman and Geman [14], many image analysis problems have beenformulated in this

MRF-MAP framework.

2.2.3 Gibbs Sampler

Gibbs sampling is a method for generating a sequence of samples from the joint proba-

bility distribution of two or more random variables. The associated algorithm, called the

Gibbs sampler, was devised by Geman and Geman [14]. Gibbs sampling is applicable

when the joint distribution is not known explicitly, but theconditional distribution of each

variable is known. It operates by generating a realization from the distribution of each ran-

dom variable in turn, conditional on the current values of neighboring random variables.

Geman and Geman showed that the sequence of samples comprises a Markov chain, and
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the stationary distribution of the Markov chain is the designed joint distribution. Gibbs

sampling is well-adapted to sampling the joint distribution of MRFs, because MRFs are

typically specified as conditional probability distributions.

2.3 Related Work

2.3.1 Non-hierarchical MRF Models

Texture Models

MRFs have been used in computer vision and image processing for texture synthesis [9,

12, 32], image segmentation [11], and image restoration [14, 26]. In image processing, a

digital image is defined as a function of a two-dimensional lattice. The value at a site in

the lattice is called the gray level of the image at that point. Texture is a spatially extended,

statistically homogeneous pattern of gray levels. If we assume that the gray level of a pixel

only depends on those of its neighbors, textures can be modeled as MRFs. The states of

the MRF texture model are all possible gray levels. A sample texture is regarded as a

realization of the MRF model and is used to estimate the conditional distribution of the

model through either parametric [9] or non-parametric methods [12, 32]. Texture can be

synthesized by sampling from the conditional distribution. Large neighborhood systems

are required to capture the visual characteristics of a natural texture,e.g., 24-neighborhood

and 48-neighborhood systems were used in [32] (see Figure 2.2).

Image Restoration Models

In addition to MRFs where all states are observable, there arealso hidden Markov models

which contain states that are not directly observable. These hidden models are flexible and

10



www.manaraa.com

Chapter 2. Background and Related Work

powerful when used in applications such as image restoration and segmentation, because

many kinds of prior knowledge can be modeled. For example, Besag [4] used a hidden

MRF to model the local characteristics of unobserved sample images, assuming that pixels

close together tend to have the same or similar gray levels. As a second example, Geman

and Geman [14] used anintensity processF to characterize the variations of gray levels,

and aline processL to characterize the presence and orientation of edges. The original

image was modeled as a pair of hidden Markov processes,X = (F,L). F is defined

over a lattice where each site corresponds to one image pixel, andL is defined over a dual

lattice with sites centered between each vertical and horizontal pair of pixels (Figure 2.3).

The sites ofL represent possible edges. The given image is a realization of an observable

process,Y , which is modeled as a blurred and noisy version of the original image:

Y = Ψ(H(F ), N)

whereΨ is an invertible operation,H is a shift-invariant blurring matrix andN is an

independent noise field. The addition of the line process results in good performance

for finding the boundaries of arbitrary shapes. The pair of intensity and line processes

is flexible, for example, Tonazziniet al. [38] used it to solve a blind image separation

problem.

Image Segmentation Models

In image segmentation, hidden MRFs can be used to model regions where pixels have

similar gray values or are statistically homogeneous. One example is Derin and Elliott’s

two-level hierarchical GRF, which they used to model and segment noisy and textured

images [11]. Derin and Elliott’s model was based on aregion process, X (the high level

process characterizing formation of homogeneous regions), and atexture process, T (the

low level process modeling textures in different regions).A noisy or textured image was

modeled using an observable random field,Y , which is defined in terms of hidden random
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fields,X andT . Derin and Elliott adopted a specific class of GRF to model boththe region

process and the texture process. The GRF class specifies the distribution in terms of the

8-neighborhood system, and assigns one parameter to cliquetypes with two or more sites.

The clique potentials are then defined as

VC(x) =







−ζ if all xs in C are equal

ζ otherwise

whereζ is the parameter assigned for the clique typeC. And the potential for the single

site clique is defined asVC(x) = αi for xs = i wherei represents one of theq different

regions thatX can model. When parameters are properly chosen, the above GRF class is

good at modeling various regions and textures. Derin and Elliott were interested in two

classes of images: noisy ones and textured ones. While the region processes are identical

for these two classes, the low level models are different. For noisy images, the model is

Y = F(X) + N whereF is simply a mapping of the region type to the matching gray

level andN is additive white noise. For textured images, the model isY = H(X) =

T whereH is a simple mapping of the region type to the corresponding texture. Derin

and Elliott developed a parameter estimation scheme for finite state space GRF based on

histogramming and least squares fit. The scheme has the following steps: 1) Find the

relationship between the joint probability and the parameters; 2) use histogramming to

calculate these probabilities; 3) build an overdeterminedsystem of linear equations with

respect to probabilities and parameters; and 4) solve the system using the least squares fit.

Limitations of Non-hierarchical Markov Random Field Models

MAP estimation is commonly used to restore or segment images.MAP estimation finds

thex which maximizes the probability distribution ofX conditioned on the datay, P (X =

x|Y = y). The estimation is usually implemented as maximizing

log P (Y = y|X = x) + log P (X = x) − log P (Y = y),

12
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whereP (Y = y) is assumed to be constant. For the non-hierarchical MRFs discussed

thus far, exact MAP estimation is quite expensive. Consequently, approximation methods

such as iterated conditional modes (ICM) [4], dynamic programming [11], or simulated

annealing with Gibbs sampling [14] are used. Another difficulty with non-hierarchical

MRFs is that the neighborhood systems need to be small becauselarger neighborhood

systems dramatically increase the number of parameters andthe complexity of the MAP

algorithms. Although these models perform well for the tasks described by the authors,

they have only a limited ability to characterize statistical properties at large spatial scales.

2.3.2 Hierarchical MRF Models

To address the problems associated with non-hierarchical models, multiscale MRF models

were formulated and have been extensively discussed in the image processing literature [5,

6, 20, 21, 24, 27, 29, 46].1 For example, in Bouman and Shapiro’s multiscale MRF

(MSRF) model [6] for Bayesian image segmentation, there is a series ofL random fields

at a range of scales or resolutions. At each scale,i, the segmentation is modeled as a

hidden MRF,X(i), defined on a lattice,S(i). X(0) is the base of the pyramid,i.e., it

is the random field at the finest scale with a lattice corresponding to the image. Each

site at the next coarser scale,X(1), corresponds to four sites ofX(0), etc. Bouman and

Shapiro assumed that the random field at each scale depends only on the coarser random

field above it in the resolution pyramid,i.e., the sequence of random fields from coarse-

to-fine scales is a Markov chain. The image to be segmented wascharacterized by an

observable MRF,Y . The non-iterative method used by Bouman and Shapiro to segment

images is termed asequential MAP(SMAP) estimator. The SMAP algorithm consists of

two full passes through the pyramid. The SMAP algorithms have performance comparable

to or better than that of MAP estimation by simulated annealing in a non-hierarchical

1We note that the two-level hierarchical GRF model in [11] is not multiscale because there is
no correlation between the two levels.
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MRF. Furthermore, SMAP algorithms require less computationthan simulated annealing

or ICM.

Lafertéet al. [24] also exploited the causality between scales and developed a method

calledhierarchical MAP(HMP) based on the Viterbi algorithm, to compute an exact MAP

estimate on a quadtree. Like SMAP, HMP is non-iterative and requires two passes on the

quadtree. SMAP was extended by Lafertéet al. to segmentation of multi-resolution im-

ages. Experiments demonstrated that these hierarchical approaches require less compu-

tation and result in better estimation than non-hierarchical methods. Wilson and Li [46]

extended the MSRF model in [6] by adding interactions betweenpixels at a given scale

which model regions that contains significant variation in image properties. Both 4-

neighborhood and 8-neighborhood systems are used in the model. However, only pairwise

interactions are included in their prior. As in [24], the observation model incorporates a

multi-resolution representation of the image of interest:there is a series of observable

MRFs,Y (i), 0 ≤ i ≤ L, having a pyramid structure identical to Bouman and Shapiro’s [6]

prior. In addition, by carefully combining the prior and observation models, the estima-

tion algorithms can be made independent of the number of classes. As a result, the model

is able to segment images containing unknown number of regions. A sequential multi-

resolution MAPestimation process, utilizing a Gibbs sampler and simulated annealing, is

used to estimate random process parameters and segment images.

In yet another example of a hierarchical MRF, Katoet al. [20, 21] further extended

the neighborhood system used in [46], so that it contains thethree scales shown in Fig-

ure 2.4. Each site has interactions with its parent as well asits neighbors at the same scale,

and its children. Due to the complexity of the neighborhood system, iterative algorithms

are required to compute the MAP estimate. A multi-temperature annealing scheme was

developed to segment images. The approach assigns high temperatures to coarser scales

so that the solutions computed will less likely correspond to local minima. At the finer

scales, the annealing is performed at lower temperatures. Although this provides excellent
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segmentation results, it is computationally expensive.

2.3.3 MRF Parameter Estimation

Parameter estimation is important for Bayesian image analysis because model parameters

are required for MAP estimation. Maximum likelihood (ML) estimation is often used

for MRF parameter estimation [3]. When part of the data is hidden, the Expectation-

Maximization (EM) algorithm [10] is commonly used for ML estimation. The EM al-

gorithm is an iterative procedure in which each iteration has two steps: 1) the E-step

which computes the conditional expectation of the likelihood of the hidden data given the

observed data and current estimates; and 2) the M-step whichupdates the parameter esti-

mates by maximizing the conditional expectation computed in the E-step. The procedure

stops when the parameter estimates stabilize. A major difficulty in applying the EM algo-

rithm to MRFs is in the calculation of the conditional expectation in the E-step, which is

generally intractable because it requires summing over allpossible configurations. There-

fore, approximation techniques such as the Mean Field Approximation [7, 38, 48] and

pseudo-likelihood method [8, 50] are used in the E-step. SEM, a stochastic version of the

EM algorithm, has been proposed to reduce dependence on the initial estimate by adding

a stochastic step after the E-step [28]. Alternatively, Monte Carlo Markov Chain sampling

can be used to approximately compute the expectation [25, 35, 41]. The resulting Monte

Carlo EM (MCEM) includes SEM as a special case. EM and MCEM have been extended

for parameter estimation on a quadtree [6, 24].
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Figure 2.2: Brodatz textures: a) aluminum wire mesh; b) straw; c) magnified French
canvas; d) loose burlap. The middle column and the right column are synthesized textures
using24-neighborhood and48-neighborhood respectively [32].
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Figure 2.3: Pixel sites (circles) and edge sites (squares) in Geman and Geman’s image
restoration model [14]. Pixel sites have a 4-neighborhood system, and each edge site has
6 neighbors.

Figure 2.4: The neighborhood system in Kato’s multiscale MRFmodel [21].
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Modeling Protein Spatial Distributions

In a specific signaling pathway, there are typically from 10 to 100 proteins of interest. Let

us consider a simple, idealized case, where there are three proteins of interest which we

call {R,G,B}, and where only two proteins can be observed in any single sample. For

this scenario, we use a hidden processD with four states{R,G,B,X} to characterize

the distribution of proteins on the cell membrane. The additional stateX corresponds to

background.D is called adistribution process. In addition, there are three observable

processes,Or, Og andOb, to model observations where only two kinds of proteins can

be observed at a time. These processes are calledobservation processesand have four

observable states{R′, G′, B′, X ′}. As in [36], we call these observable statesobservation

symbols, corresponding to the presence or absence of a gold particlebound to a protein vi-

sualized by TEM. The observation symbol probability distribution [36] is used to describe

the probability that hidden statej will be observed as symboli.

The approach adopted here is based on the quadruple stochastic model shown in Fig-

ure 3.1. This model assumes that the three observation processes depend on the same dis-

tribution process. The behavior of the observation processes given the distribution process

is defined by the observation symbol probability distribution. There are three observation
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symbol probability distributions, one for each observation process. It is assumed that the

state in a given observation process depends only on the corresponding state in the distribu-

tion process, and that threeobservation matrices, Qr, Qg andQb, can be used to represent

the conditional probability mass functions,P ((Or)s = i|Ds = j), P ((Og)s = i|Ds = j)

andP ((Ob)s = i|Ds = j):

Qr =















0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1















Qg =















1 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1















Qb =















1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1















where(Qk)ij is the probability that the hidden statej will be observed as the symboli in

Ok. The problem is to infer the conditional p.m.f. ofD given the observation processes

Or, Og andOb.

In the following sections, first-order Markov chains are used for both the distribution

and observation processes to demonstrate that the quadruple stochastic model is feasible.

The transition probabilities of hidden first-order Markov chains can be estimated in closed

form given the visible chains. It is then demonstrated that the transition probabilities of

hidden second-order Markov chains can be estimated in closed form under an assumption

of isotropy. Finally, we describe that the conditional p.m.f of a hidden MRF with a 4-

neighborhood system can be reliably estimated given the visible MRFs.
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Figure 3.1: Structure of a quadruple stochastic random fieldused in modeling of protein
spatial distributions. Red, green and blue open circles representR, G, andB, and red,
green and blue closed circles representR′, G′, andB′.

3.1 A First-order Markov Chain Model

This section demonstrates that the transition probabilities of a hidden first-order chain can

be accurately estimated given the visible chains.

The distribution processD is a first-order Markov chainΓ in which the Markov prop-

erty implies that

P (γt+1 = j|γt = i, γt−1 = it−1, · · · , γ1 = i1, γ0 = i0)

= P (γt+1 = j|γt = i)

= pji

(3.1)

wherei, j ∈ {R,G,B,X}, andpji is the probability of going from statei to statej.

Assuming that the Markov process is homogeneous, the statistics of Γ are defined by a

transition matrixP:

P =















prr prg prb prx

pgr pgg pgb pgx

pbr pbg pbb pbx

pxr pxg pxb pxx















.
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The first step is to generate a set of visible chains. To generate visible chains, we must

first generate a hidden chainγ of lengthN . Three visible chainsγr, γg, andγb are then

obtained by mapping the hidden states inγ to the observable symbols using the observation

matrices. For example, we replaceR,G,B,X with X ′, G′, B′, X ′ respectively to generate

γr. The visible chains,γr, γg, andγb, are realizations of the observation modelsΓr, Γg,

andΓb. The hidden chainγ is a realization ofΓ. The transition probabilities inP are

estimated using histogramming [16]. For example, the probability of going from R to G

can be estimated as follows:

pgr = P (G|R) =
P (〈G,R〉)

P (〈R〉)
≈

H(〈G,R〉)/N

H(〈R〉)/N
=

H(〈G,R〉)

H(〈R〉)
(3.2)

whereH(〈R〉) andH(〈G,R〉) are the observed frequencies of the one-tuple〈R〉 and the

two-tuple〈G,R〉 in the hidden chain. In order to accurately estimate the transition prob-

abilities, the chain lengthN needs to be quite large. In addition, the histograms are cal-

culated from a sufficiently large starting pointS so that they will be representative of the

stationary distribution.

Unfortunately, the histograms for all states in the hidden chain are not directly observ-

able. However, we can deduce them from the histograms of symbols in the visible chains.

Because of the one-to-one relationships betweenG in γ andG′ in γr and betweenB in γ

andB′ in γr, we observe that

H(〈G〉) = Hr(〈G
′〉), H(〈B〉) = Hr(〈B

′〉) (3.3)

H(〈G,G〉) = Hr(〈G
′, G′〉), H(〈B,B〉) = Hr(〈B

′, B′〉) (3.4)

H(〈B,G〉) = Hr(〈B
′, G′〉), H(〈G,B〉) = Hr(〈G

′, B′〉) (3.5)
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whereHr are histograms of one-tuples and two-tuples of symbols inγr. It follows that

pgg ≈
Hr(〈G

′, G′〉)

Hr(〈G′〉)
(3.6)

pbg ≈
Hr(〈B

′, G′〉)

Hr(〈G′〉)
(3.7)

pgb ≈
Hr(〈G

′, B′〉)

Hr(〈B′〉)
(3.8)

pbb ≈
Hr(〈B

′, B′〉)

Hr(〈B′〉)
. (3.9)

Using analogous methods,prr, prb, pbr, pbb can be estimated fromγg, andprr, prg, pgr, pgg

can be estimated fromγb. Therefore, estimates for all transition probabilities involving

at most two of the non-background states, namelyprr, prg, prb, pgr, pgg, pgb, pbr, pbg, pbb,

can be estimated directly from the visible chains. Applyingthe stochastic matrix property,

i.e., all column sums must equal one, three more entries in the transition matrix can be

estimated:

pxr = 1 − prr − pgr − pbr

pxg = 1 − prg − pgg − pbg

pxb = 1 − prb − pgb − pbb.

Four additional transition probabilities remain to be estimated:prx, pgx, pbx, andpxx. Since

all Gs inγ are observed asX ′s inγg, it follows that

Hg(〈R
′, X ′〉) = H(〈R,X〉) + H(〈R,G〉) (3.10)

= H(〈X〉) · prx + Hb(〈R
′, G′〉). (3.11)

We now observe that all histograms of one-tuples in the hidden chain are known:

H(〈R〉) = Hg(〈R
′〉) (3.12)

H(〈G〉) = Hr(〈G
′〉) (3.13)

H(〈B〉) = Hg(〈B
′〉) (3.14)

H(〈X〉) = N − S − H(〈R〉) − H(〈G〉) − H(〈B〉) (3.15)
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whereN is the chain length andS is the starting point for histogramming. Therefore, the

only unknown variable in Equation 3.11 isprx. Using methods analogous to those de-

scribed above forHg(〈R
′, X ′〉), eight linear equations are obtained usingHg(〈B

′, X ′〉),

Hg(〈X
′, X ′〉), Hr(〈G

′, X ′〉), Hr(〈B
′, X ′〉), Hr(〈X

′, X ′〉), Hb(〈R
′, X ′〉), Hb(〈B

′, X ′〉),

andHb(〈X
′, X ′〉), whereprx, pgx, pbx, andpxx are the unknown variables. The result-

ing system of nine linear equations in four unknowns can be solved in closed form using

the pseudo-inverse method.

The relative error of̂P is computed in terms of the matrix 2-norm,‖P̂ − P‖2/‖P‖2.

The average error for seven experiments is approximately10−4, i.e., P̂ is accurate to 4

decimal digits. Actual data are shown in Appendix A.1.

3.2 A Second-order Markov Chain Model

Unfortunately, first-order Markov chains are too trivial toapply to experimental data. Con-

sequently, we investigate whether the transition probabilities of a hidden higher-order

Markov chain can be accurately estimated given the visible chains. This Section shows

that under an assumption of isotropy the transition probabilities of a hidden second-order

Markov chain can also be estimated in closed form. For a second-order Markov chain, the

Markov property means that

P (γt+1 = k|γt = j, γt−1 = i, γt−2 = it−2, · · · , γ1 = i1, γ0 = i0)

= P (γt+1 = k|γt = j, γt−1 = i)

= pkji

(3.16)

wherei, j, k ∈ {R,G,B,X}, andpkji is the probability that the process will enter state

k given that the current state isj and the previous state wasi. There are43 = 64 such

transition probabilities. As before,P is used to denote the matrix1 of these transition

1This term is used even thoughP is three dimensional,i.e., it is a tensor.
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probabilities. GivenP, a second-order hidden chainγ and three visible chains,γr, γg, and

γb, are generated using an approach similar to those describedin Section 3.1.

The histograms of one-tuples and two-tuples of states inγ can be computed as in

Section 3.1. However, we also need the histograms of three-tuples of states to calculate

the transition probabilities for the second-order Markov chain

pnml =
H(〈n,m, l〉)

H(〈m, l〉)
(3.17)

wherel, m, n ∈ {R,G,B,X}, andH(〈n,m, l〉) is the value of the histogram for the

three-tuple〈n,m, l〉 in γ. A strategy identical to that described in Section 3.1 is used to

infer the transition probabilities from the visible chains. We first compute the transition

probabilities involving at most two of the non-background states: 1)pggg, pbgg, pgbg, pbbg,

pggb, pbgb, pgbb andpbbb from γr; 2) prrr, pbrr, prbr, pbbr, prrb, pbrb, prbb andpbbb from γg;

and 3)prrr, pgrr, prgr, pggr, prrg, pgrg, prgg andpggg from γb. Three additional transition

probabilities are estimated by exploiting the stochastic matrix property

pxrr = 1 − prrr − pgrr − pbrr

pxgg = 1 − prgg − pggg − pbgg

pxbb = 1 − prbb − pgbb − pbbb.

In addition, we can directly estimate six more entries inP, namelypnml, wheren, m,

l ∈ {X,R}, or {X,G}, or {X,B}, andX appears once in the three-tuple〈n,m, l〉. For

example, because

Hr(〈G
′, X ′, G′〉) = H(〈G,X,G〉) + H(〈G,R,G〉) (3.18)

and

H(〈G,R,G〉) = Hb(〈G
′, R′, G′〉) (3.19)
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it follows that

pgxg ≈
H(〈G,X,G)

H(〈X,G〉)

=
Hr(〈G

′, X ′, G′) − Hb(〈G
′, R′, G′〉)

H(〈X,G〉)
. (3.20)

Using analogous methods,pggx, prxr, prrx, pbxb andpbbx can also be estimated. It follows

that there are 34 remaining unknown variables, namelypbgr, pxgr, pgbr, pxbr, pgxr, pbxr,

pxxr, pbrg, pxrg, prbg, pxbg, prxg, pbxg, pxxg, pgrb, pxrb, prgb, pxgb, prxb, pgxb, pxxb, pgrx, pbrx,

pxrx, prgx, pbgx, pxgx, prbx, pgbx, pxbx, prxx, pgxx, pbxx andpxxx.

In a manner analogous to that described in Section 3.1, we write the observed frequen-

cies of three-tuples of symbols in the visible chains in terms of the transition probabilities

and histograms of two-tuples of states. For example,

Hr(〈X
′, B′, G′〉) = H(〈X,B,G〉) + H(〈R,B,G〉)

= H(〈B,G〉) · (pxbg + prgb)

wherepxbg andprgb are unknown variables. In an analogous manner, 12 additional linear

equations can be derived fromγr using

Hr(〈B
′, X ′, G′〉), Hr(〈X

′, X ′, G′〉), Hr(〈X
′, G′, B′〉), Hr(〈G

′, X ′, B′〉),

Hr(〈X
′, X ′, B′〉), Hr(〈B

′, G′, X ′〉), Hr(〈X
′, G′, X ′〉), Hr(〈G

′, B′, X ′〉),

Hr(〈X
′, B′, X ′〉), Hr(〈G

′, X ′, X ′〉), Hr(〈B
′, X ′, X ′〉), Hr(〈X

′, X ′, X ′〉).

An analogous approach can be used to derive 13 linear equations fromγg and 13 linear

equations fromγb. Unfortunately, the resulting system of 39 linear equations in 34 un-

knowns is under-determined. To provide additional constraints on the matrix of transition

probabilities, an assumption of symmetry under reflection (isotropy) is introduced (Fig-

ure 3.2). As a result, the number of unique transition probabilities in P is reduced from 64

to 40. Because the number of unknown variables is also reducedfrom 34 to 19, the result-

ing linear system can now be solved in closed form using the method of pseudo-inverse.
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We compute the relative error using the matrix 2-norm as in Section 3.1. The average error

of five experiments is approximately10−3. Actual data are shown in Appendix A.2.

Figure 3.2: Concatenation of the future stateγt+1, the current stateγt, and the previous
stateγt−1 into a two-neighbor neighborhood system. Symmetry under isotropy means that
P (γt+1 = n|γt = m, γt−1 = l) equalsP (γt+1 = n|γt = l, γt−1 = m), i.e., for all l, m,
n ∈ {R,G,B,X}, pnml equalspnlm.

3.3 A Markov Random Field Model

This section investigates whether the strategy used in the first-order and second-order

Markov chain models works for Markov random field models. A Markov random field

can be specified by a conditional probability mass function,P (Xs = xs|Xt = xt, t ∈ Ns).

Unfortunately, the conditional p.m.f. of a hidden MRF can notbe estimated in closed

form using a strategy similar to the strategy described in Section 3.2. As a result, ML esti-

mation is utilized to estimate the conditional probabilities. A method using mathematical

programming techniques is developed to solve the ML estimation problem and it is shown

that this approach results in good estimates for MRFs with a 4-neighborhood system.

MRFs with a 4-neighborhood system (see Figure 2.1) are used for both the distribu-

tion and observation processes. For MRFs with a 4-neighborhood system, the matrix of

conditional probabilities,P, is five dimensional and there are45 = 1024 elements inP.

Given P, we first generate a realization of the distribution process, d, using the Gibbs

sampler [14]:

1: Initialize d randomly.

26



www.manaraa.com

Chapter 3. Modeling Protein Spatial Distributions

2: Chooses ∈ S randomly and replaceDs with ds drawn fromP (Ds = ds|Dt = dt, t ∈

Ns).

3: Repeat Step 2 many times.

After the realization is generated, samples of three visible fields,or, og, andob, are obtained

by mapping the states ind to symbols of the observation process using the observation

matrices. For exposition purposes, we number the sites in the 4-neighborhood system as

in Figure 3.3a. A five-tuple〈m, l, k, j, i〉 and a four-tuple〈l, k, j, i〉 can then be used to

denote the joint events(D4 = m,D3 = l, D2 = k,D1 = j,D0 = i) and(D3 = l, D2 =

k,D1 = j,D0 = i) respectively. The conditional probabilityP (D4 = m|D3 = l, D2 =

k,D1 = j,D0 = i) is estimated as:

P (D4 = m|D3 = 1, D2 = k,D1 = j,D0 = i)

=pmlkji

≈
H(〈m, l, k, j, i〉)

H(〈l, k, j, i〉)
(3.21)

whereH are frequencies of the tuples in the samples ofD. In order to get good estimates

for the conditional probabilities, the sample size need to be quite large. The realization of

the distribution process,d, is generated on a lattice of size600 × 740. Corresponding to

eachd, there is a set of three visible samples. Our experiments showed that 100 sets of

visible samples results in good estimates.

By performing a raster scan of the window shown in Figure 3.3 over the visible sam-

ples, we obtain the frequencies of four-tuples and five-tuples of observation symbols. We

can directly estimate 108 of the conditional probabilitiesfrom these observed frequencies

and by exploiting the stochastic matrix property. A system of linear equations can be

built as in Section 3.2. Unfortunately, the resulting system of linear equations is under-

determined. To reduce the number of unknown variables, we exploit isotropy in the matrix

of conditional probabilities as shown in Figure 3.4. The isotropy assumption is reasonable

because the protein distributions are independent of orientation. The number of unknown
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variables is reduced to 181 under this assumption. Unfortunately, the system of linear

equations is still under-determined. Consequently, ML estimation is adopted to infer the

conditional probabilities. Although the EM algorithm is the standard method for ML esti-

mation when part of the data is hidden, it converges very slowly. By exploiting a property

of the observation matrix (i.e., the probabilities in the observation matrix are either 0 or1),

we develop a non-iterative method using mathematical programming techniques to solve

the ML estimation problem.

Figure 3.3: Numbering of the sites in a 4-neighborhood system.

Given a realizationd of the distribution process, the ML estimate maximizes the con-

ditional probability,P (d|P). The probability ofd givenP is approximated by the pseudo-

likelihood [26] which is simply a product of the conditionalprobabilities:

P(d|P) ≈
∏

s∈S

P(ds|dt, t ∈ Ns). (3.22)

However, the distribution process is not directly observable. Only visible samples are

available. Consequently, we need to compute the probabilityof a visible sampleok given

P andQk. We also approximate the conditional probability ofok givenP andQk by the

pseudo-likelihood:

P(ok|P,Qk) ≈
∏

s∈S

P((ok)s|(ok)t, t ∈ Ns) (3.23)
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Figure 3.4: Isotropy in a 4-neighborhood system. b), c) and d) are rotations of a) by multi-
ples of90◦. e)-h) are mirror images of a) with respect to four axes of reflective symmetry,
i) axes of reflective symmetry. All eight conditional probabilities, e.g., P (m|i, l, k, j) and
P (m|l, k, j, i), are equal under the isotropy assumption.

where (by Bayes’ rule):

P((ok)s|(ok)t, t ∈ Ns)

=
∑

dt,t∈Ns

P((ok)s|ds)P(ds|dt, t ∈ Ns)P(dt, t ∈ Ns|(ok)t, t ∈ Ns) (3.24)

=
∑

dt,t∈Ns

P((ok)s|ds)P(ds|dt, t ∈ Ns)P((ok)t, t ∈ Ns|dt, t ∈ Ns)P(dt, t ∈ Ns)

P((ok)t, t ∈ Ns)
.

(3.25)

Because it is assumed that a symbol at a site in an observation process depends only on

the corresponding state in the distribution process, it follows that

P ((ok)t, t ∈ Ns|dt, t ∈ Ns) =
∏

t∈Ns

P((ok)t|dt). (3.26)

Finally, we observe that

P((ok)s|(ok)t, t ∈ Ns)

=
∑

dt,t∈Ns

P((ok)s|ds)P(ds|dt, t ∈ Ns)P(dt, t ∈ Ns)
∏

t∈Ns
P((ok)t|dt)

P((ok)t, t ∈ Ns)
(3.27)
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and wherek ∈ {r, g, b}.

In Eq. 3.27,P ((ok)s|ds) is known and defined inQk. P ((ok)t, t ∈ Ns) are the proba-

bilities of four-tuples of symbols in the visible fields, andcan be estimated from samples of

the visible fields.P (dt, t ∈ Ns) are the probabilities of four-tuples of states in the hidden

field (determined byP). The unknown variables areP (ds|dt, t ∈ Ns) andP (dt, t ∈ Ns).

The Maximum likelihood estimation ofP is achieved by maximizing the logarithm of the

probability that the process generated the visible samplesas a function ofP (ds|dt, t ∈ Ns)

andP (dt, t ∈ Ns):

P̂ = arg max
P

∑

k∈{r,g,b}

log P(ok|P,Qk). (3.28)

Figure 3.5: Quadtree of tuple probabilities. The probability of each vertex equals the sum
of the probabilities of its children.

Under the isotropy assumption, there are 181 unknown conditional probabilities. In ad-

dition, 37 of the joint probabilities of state four-tuples are also unknown. The conditional

probabilities are constrained by

∀i, j, k, l
∑

m

pmlkji = 1 (3.29)
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wherei, j, k, l, m ∈ {R,G,B,X}. There are also constraints on the joint probabilities of

state four-tuples. To illustrate these constraints, we canbuild a quadtree of the four-tuple

probabilities (see Figure 3.5). As before, we can compute the probabilities of all one-tuples

and two-tuples, and the probabilities of all tuples containing at most two non-background

states. The constraint is
∑

〈l,k,j,i〉∈C(a)

P (〈l, k, j, i〉) = P (a) (3.30)

wherea is the nearest known ancestor of the four-tuple andC(a) is the set of leaves of

the quadtree which are on the branch which starts ata. We know that at least one of

the ancestors of the four-tuple is known because the probabilities of all two-tuples are

known. Therefore, there are 218 unknown variables with constraints defined by Eq. 3.29

and Eq. 3.30. The objective function is

f =
∑

k

log P(ok|P,Qk) (by Eq. 3.23)

=
∑

k

log

[

∏

s∈S

P((ok)s|(ok)t, t ∈ Ns)

]

=
∑

k

∑

(ok)t,t∈Ns

Hk((ok)t, t ∈ Ns) log P((ok)s|(ok)t, t ∈ Ns) (3.31)

wherek ∈ {r, g, b} andP((ok)s|(ok)t, t ∈ Ns) is defined in Eq. 3.27.Hk((ok)t, t ∈ Ns) is

the observed frequency of the four-tuple of symbols. The problem we need to solve is

maximize:f

subject to:

(i) 0 ≤ P (ds|dt, t ∈ Ns) ≤ 1;

(ii) 0 ≤ P (dt, t ∈ Ns) ≤ 1;

(iii) constraint defined by Eq. 3.29;

(iv) constraint defined by Eq. 3.30.

A software package, SNOPT [15], is used to solve the above problem.
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3.4 Results for the Markov Random Field Model

To test this method for ML estimation, a conditional distribution is first specified for a

MRF with a 4-neighborhood system. 100 realizations of the MRF were generated on a

lattice of size600 × 740 by sampling from the conditional distribution using the Gibbs

sampler. For each realization, three visible samples were obtained by mapping the hidden

states in the realization to the observation symbols using the observation matrices. By

means of a raster scan (see Figure 3.3) over the visible samples, the frequencies of four-

tuples and five-tuples of observation symbols were computed. We estimated 108 condi-

tional probabilities directly from these frequencies. To estimate the remaining conditional

probabilities, Eq. 3.31 was used to create an objective function which was maximized

subject to the constraints described in Section 3.3 using SNOPT. This results in good esti-

mates which generate realizations which are visually very similar to those generated using

the specified conditional distributions (see Figure 3.6). The relative errors of estimates are

shown in Table 3.1. We note that the estimates are not as good as those for the first- and

second-order Markov chain models, especially for the case shown in Figure 3.6 b) and c).

One factor that may contribute to the error in the estimates is the lack of sufficient data

for accurate estimation of conditional probabilities. Another factor may be the fact that

the visible fields may be consistent with many different hidden distributions, and the ML

estimation process can yield any of these distributions [11].

1 2 3 4
‖P̂−P‖2

‖P‖2
(×102) 2.98 14.3 37.4 6.20

Figure 3.6 a) 3.6 b) 3.6 c) 3.6 d)

Table 3.1: Relative errors of estimates for the MRF modeling.
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(a)

(b)

(c)

(d)

Figure 3.6: Realizations from the MRF model with specified (left) and estimated (right)
conditional distributions.
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Unfortunately, the 4-neighborhood system is too small to achieve satisfactory results in

many situations, especially when there are long range correlations between states. In addi-

tion, because 10nm particles are larger than 5nm particles,the interactions between 10nm

particles are at distances longer than those between 5nm particles in the experimental data.

Figure 4.1 illustrates the problem: The clustering of 10nm particles is optimally charac-

terized at the scale of 80 pixels, but clustering of 5nm particles is optimally characterized

at the scale of 40 pixels. We also note that artifacts due to the small neighborhood system,

i.e., particle positions aliasing with the lattice become worsewith coarser grids. Although

we can use larger neighborhood systems,e.g., Tjelmeland and Besag [37], the number of

unknown variables dramatically increases. For example, there are 19400 unknown vari-

ables for a 8-neighborhood system, which is too large for SNOPT to handle. However, a

more powerful mathematical programming package was able tosolve a system with such

a large number of unknown variables, our datasets are not large enough to reliably esti-

mate the conditional distributions, because only 10 to 20 images are captured in a typical

experiment using nanoprobes.
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4.1 A Multiscale MRF Model

To solve those problems, a multiscale MRF model has been developed. Like Bouman and

Shapiro [6], a pyramid with three layers is built (Figure 4.2a). Each site is a parent of four

sites in the finer layer beneath it. Let us denote the three layers from coarse-to-fine,L(2),

L(1), andL(0). For each layer, there is a corresponding distribution process,D(i) where

i ∈ {2, 1, 0}. Each of these is modeled as a MRF with a 4-neighborhood system. Fur-

thermore, two additional distribution processes are used to model the correlation between

the values of sites in one layer and those in the layer beneathit: D(2,1) betweenL(2) and

L(1), andD(1,0) betweenL(1) andL(0). Both of these are modeled as MRFs with a (4+1)-

neighborhood system, where four neighbors are in the same layer and the fifth neighbor

is their parent in the coarser layer above (Figure 4.2b). There are also three correspond-

ing observation processes for each of the distribution processes:O(2)
k , O

(1)
k , O

(0)
k , O

(2,1)
k ,

andO
(1,0)
k wherek ∈ {r, g, b}. In the multiscale MRF model, the value of a site at a given

scale depends not only on its parent in the layer above but also on its neighbors at the same

scale. In this respect, the model is closely related to thosepresented in [20, 21, 29, 46].

However, unlike the models described by these authors, the statistical inference problem is

solved by means of a sequence of related multi-resolution problems rather than as a single

problem representing the entire quadtree. Multi-resolution representations of the observed

data at three scales are realizations ofO(i), i ∈ {2, 1, 0}, and data between two scales are

realizations ofO(2,1) andO(1,0). The conditional p.m.f.’s ofD(i) can be inferred fromO(i)
k

as described in Section 3.3. Furthermore, if the conditional p.m.f.’s of D(2,1) can be esti-

mated fromO
(2,1)
k , andD(1,0) from O

(1,0)
k , then the Gibbs sampler can be used to generate

samples from the conditional p.m.f.’s in a coarse-to-fine manner.

The multiscale MRF model has been tested on the data used in Figure 4.1. The data

were processed at three different scales, with grid sizes of20, 40 and 80 pixels respectively.

The finest scale was chosen to be 20 pixels because that is the most frequent distance of

the nearest neighbor for every particle in the data set (Figure 4.3). When there are multiple
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proteins present at a single site, simple majority is used todetermine the state of the site.

Because there are only two proteins, the frequencies of the four-tuples and five-tuples of

states are computed by means of a raster scan where the 4-neighborhood is scaled to a size

of 80×80 pixels (see Figure 3.3). The conditional probabilities ofD(2) are then computed

using Eq. 3.21. In an analogous way, the conditional probabilities of D(1) andD(0) are

computed using the data at scales of40 and20 pixels respectively. By means of a raster

scan over the data at scales of both80 and40 pixels, the frequencies of the five-tuples and

six-tuples of states (see Section 4.2) can also be computed.The conditional probabilities

of D(2,1) are then computed using Eq. 4.1. In an analogous manner, the conditional proba-

bilities of D(1,0) are computed using data at scales of40 and20 pixels. The Gibbs sampler

is then used to generate samples from the conditional p.m.f’s:

1: Initialize D(2) randomly.

2: Sample from the conditional p.m.f. ofD(2).

3: Initialize D(1) randomly.

4: While keepingD(2) unchanged, sample from the conditional p.m.f. ofD(2,1).

5: Initialize D(0) randomly.

6: While keepingD(1) unchanged, sample from the conditional p.m.f. ofD(1,0).

Keeping the upper layer unchanged while sampling from the MRFmodeling the corre-

lation between two layers allows long range properties to propagate from coarse scales

to fine scales. The multiscale MRF model is very good at characterizing both short and

long range interactions between states as shown in Figure 4.4. Compared to Figure 4.1

a), b) and c), particle distributions in Figure 4.4 c) are visually very similar to those in

the experimental sample images and the artifacts due to the use of the relatively small

neighborhood system are minimal. There are 10 images in our sample dataset, which is

adequate to obtain good estimates of the conditional probabilities as shown in Figure 4.4.
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4.2 Parameter Estimation: a (4+1)-Neighborhood System

In order to apply the multiscale MRF model to data where there are three proteins, the pa-

rameters of the hidden MRF with a (4+1)-neighborhood system first need to be estimated

from the visible fields. A strategy similar to that describedin Section 3.3 is adopted to

solve the ML estimation problem. Figure 4.5 indicates how sites are numbered in a (4+1)-

neighborhood system. Using this numbering scheme, a six-tuple 〈n,m, l, k, j, i〉 and a

five-tuple〈m, l, k, j, i〉 can be used to denote the joint events

(D
(u,w)
5 = n,D

(u,w)
4 = m,D

(u,w)
3 = l, D

(u,w)
2 = k,D

(u,w)
1 = j,D

(u,w)
0 = i)

and

(D
(u,w)
4 = m,D

(u,w)
3 = l, D

(u,w)
2 = k,D

(u,w)
1 = j,D

(u,w)
0 = i)

respectively, whereu denotes an upper layer andw denotes a lower layer. The conditional

probabilityP (D
(u,w)
5 = n|D(u,w)

4 = m,D
(u,w)
3 = l, D

(u,w)
2 = k,D

(u,w)
1 = j,D

(u,w)
0 = i)

can then be estimated:

P (D
(u,w)
5 = n|D(u,w)

4 = m,D
(u,w)
3 = 1, D

(u,w)
2 = k,D

(u,w)
1 = j,D

(u,w)
0 = i)

=pnmlkji

≈
H(〈n,m, l, k, j, i〉)

H(〈m, l, k, j, i〉)
(4.1)

whereH are histograms of the tuples. The probability of a realization of the distribution

process,d(u,w), givenP is also approximated by a product of the conditional probabilities:

P(d(u,w)|P) ≈
∏

s∈S(w)

P(d(u,w)
s |d(u,w)

t , t ∈ Ns) (4.2)

whereS(w) is the set of sites in the lower layer. The probability of a realization of the

observation process,o
(u,w)
k , givenP andQk is approximated as:

P(o
(u,w)
k |P,Qk) ≈

∏

s∈S(w)

P((o
(u,w)
k )s|(o

(u,w)
k )t, t ∈ Ns) (4.3)
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where

P((o
(u,w)
k )s|(o

(u,w)
k )t, t ∈ Ns)

=
∑

d
(u,w)
t ,t∈Ns

P(d
(u,w)
s |d(u,w)

t , t ∈ Ns)P(d
(u,w)
t , t ∈ Ns)

∏

t∈{s}∪Ns

P((o
(u,w)
k )t|d

(u,w)
t )

P((o
(u,w)
k )t, t ∈ Ns)

(4.4)

and wherek ∈ {r, g, b}. P ((o
(u,w)
k )s|d

(u,w)
s ) are known and defined inQk. P ((o

(u,w)
k )t, t ∈

Ns) are the probabilities of symbol five-tuples in the visible fields and can be estimated

from the visible samples.P (d
(u,w)
t , t ∈ Ns) are the probabilities of state five-tuples in

the hidden field. In Eq. 4.4,P (d
(u,w)
s |d(u,w)

t , t ∈ Ns) andP (d
(u,w)
t , t ∈ Ns) are unknown

variables. The maximum likelihood estimation ofP is achieved by maximizing the log-

arithm of the probability that the process generated the visible samples as a function of

P (d
(u,w)
s |d(u,w)

t , t ∈ Ns) andP (d
(u,w)
t , t ∈ Ns):

P̂ = arg max
P

∑

k∈{r,g,b}

log P(o
(u,w)
k |P,Qk). (4.5)

Isotropy is only enforced within layers because there is no corresponding symmetry

between layers. The number of unknown conditional probabilities inP is 802. In addition,

there are 181 unknown probabilities of state five-tuples. The total number of unknown

variables is 983. As in Section 3.3, a quadtree of state tuples is built. The five-tuples are

leaves in the quadtree. The probabilities of the five-tuplesare constrained by

∑

〈m,l,k,j,i〉∈C(a)

P (〈m, l, k, j, i〉) = P (a) (4.6)

wherea is the nearest known ancestor of the five-tuples andC(a) is the set of leaves of the

quadtree which are on the branch which starts ata. The problem to be solved is
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maximize:

f =
∑

k

log P(o
(u,w)
k |P,Qk)

=
∑

k

∑

(o
(u,w)
k

)t,t∈Ns

Hk((o
(u,w)
k )t, t ∈ Ns) log P((o

(u,w)
k )s|(o

(u,w)
k )t, t ∈ Ns)

(4.7)

subject to:

(i) 0 ≤ P (d
(u,w)
s |d(u,w)

t , t ∈ Ns) ≤ 1;

(ii) 0 ≤ P (d
(u,w)
t , t ∈ Ns) ≤ 1;

(iii) ∀d
(u,w)
t , t ∈ Ns

∑

d
(u,w)
s

P (d(u,w)
s |d(u,w)

t , t ∈ Ns) = 1;

(iv) constraint defined by Eq. 4.6.

The above problem is also solved using SNOPT.

Seven experiments were performed to exam the quality of estimation. A conditional

distribution for a MRF with a (4+1)-neighborhood system was first specified. 100 realiza-

tions of the MRF were generated on a two layer resolution pyramid, i.e. a coarse lattice

of size300 × 370 above a fine lattice of size600 × 740, by sampling from the conditional

distribution using the Gibbs sampler. For each realization, three visible samples were ob-

tained by mapping the hidden states in the realization to theobservation symbols using the

observation matrices. By means of a raster scan with a windows(see Figure 4.5) over the

visible samples, the frequencies of the five-tuples and six-tuples of observation symbols

were computed. To estimate the conditional probabilities,Eq. 4.7 was used to create an

objective function and maximization subject to the constraints described above was solved

by SNOPT.

Table 4.1 shows relative errors of estimates in terms of matrix 2-norm for the seven

experiments. Like the MRF model with a 4-neighborhood system, there are errors in the
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estimates. When the number of samples are increased by a factor of ten, similar errors

were also observed. It is very likely that the errors are due to the fact that the visible fields

are consistent with many different hidden distributions. As demonstrated in Section 4.3

and Section 4.4, although there were errors in estimates of the conditional probabilities

of the MRF with a (4+1)-neighborhood system, the multiscale MRF model worked well

when applied to both synthesized and experimental data.

1 2 3 4 5 6 7
‖P̂−P‖2

‖P‖2
(×102) 44.1 33.7 29.9 35.6 35.9 45.3 33.3

Table 4.1: Relative errors of estimates for MRFs with a (4+1)-neighborhood system.

4.3 Results on Synthesized Data

The multiscale MRF model has been applied to synthesized datawhere the grand truth is

known. The conditional probabilities ofD(2), D(2,1), andD(1,0) are first specified. A Gibbs

sampler is then used to generate samples from the conditional distributions by means of

the coarse-to-fine process described in Section 4.1. The three scales used to generate the

samples are 80, 40 and 20 pixels. The coordinates of all threeproteins at the finest layer

in the samples are exported as data. The coordinates ofR are eliminated to generate a set

of data whereR is missing. In an analogous way, a set of data whereG is missing and a

set of data whereB is missing are obtained. The data sets are processed at the same three

scales used to generate them. The data sets at the scale of 80 pixels consists of samples of

O
(2)
k and are used to estimate the conditional p.m.f. ofD(2). The data sets at the scales of

80 and 40 pixels are used to estimate the conditional p.m.f. of D(2,1). The data sets at the

scales of 40 and 20 pixels are used to estimate the conditional p.m.f. ofD(1,0). Finally, the

estimates of the conditional probabilities ofD(2), D(2,1), andD(1,0) are used to generate

samples using Gibbs sampling in the same coarse-to-fine manner described previously.
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This produces satisfactory results. As shown in Figure 4.6,the samples of the finest layer

generated with specified and estimated conditional probabilities are visually very similar.

4.4 Results on Experimental Data

As a critical test, the multiscale MRF model has been applied to two sets of experimental

data obtained by immunogold labeling of membrane sheets. These were prepared from

rat basophilic leukemia 2H3 (RBL-2H3) mast cells, which express the high affinity IgE

receptor, FcǫRI. Crosslinking this receptor with multivalent ligand activates a complex,

multicomponent tyrosine kinase-dependent signaling pathway leading to the release of

histamine and other mediators of allergic and asthmatic responses. Early events in the

FcǫRI signaling cascade include receptor redistribution into large clusters, the recruitment

of both membrane-bound and cytoplasmic signaling proteinsto receptor-rich domains and

also the segregation of certain tyrosine phosphorylated scaffolding and signaling proteins

away from receptor-rich domains [42, 43, 44].

The first experiment involves three signaling species in ratbasophilic leukemia cell line

2H3 mast cells: high-affinity IgE receptorβ subunit (β), linker for activation of T cells

(LAT), and phospholipaseCγ isoform 1 (PLCγ1). It is known thatPLCγ1 colocalizes

with LAT and colocalizes loosely withβ, but LAT occurs in small clusters separate from

β [44]. There are three sets of double-labeled data in the firstexperiment:PLCγ1 labeled

with 5nm particles and LAT labeled with 10nm particles in thefirst data set (Figure 4.7

a)), LAT labeled with 5nm particles andβ labeled with 10 nm particles in the second set

(Figure 4.7 b)), andPLCγ1 labeled with 5nm particles andβ labeled with 10nm particles

in the third set (Figure 4.7 c)). There are 10 images in each data set. We computed

histograms of the distances of the nearest neighbor for every particle in the data sets and

found that the most frequent distance is 16 pixels. Consequently, windows of size16×16,

32 × 32, and64 × 64 pixels are used to estimate the histograms of symbols at the three
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scales. LAT,PLCγ1, andβ are assigned toR, G, andB respectively. In Figure 4.7 d), the

sample reconstructed from the modeling demonstrates both the colocalization of PLCγ1

(green) with LAT (red) and the segregation of LAT/ PLCγ1 from β (blue) in a single

integrated image.

In the second experiment, we again chose the FcǫRI β subunit but added two different

signaling species, Grb2-binding protein 2 (Gab2) and the p85 subunit of phosphatidylinos-

itol 3-kinase (p85 of PI 3-kinase). Gab2 is an adaptor protein and PI 3-kinase is an enzyme

that phosphorylates phosphatidylinositol lipids in the 3 position on the inositol ring. Pre-

vious double-label studies indicated that Gab2 and p85 are both recruited to receptor-rich

domains in activated RBL-2H3 cells [44]. This dataset was alsocomposed of three double-

label protocols, with 10 images each: 1) Gab2 was labeled with 5nm particles andβ was

labeled with 10nm particles (Figure 4.8 a)); 2) Gab2 was labeled with 5nm particles and

p85 was labeled with 10nm particles (Figure 4.8 b)); and 3) p85 was labeled with 5nm

particles andβ was labeled with 10nm particles (Figure 4.8 c)). The data areprocessed

at scales of 20, 40, and 80 pixels. In Figure 4.8 d), the samplereconstructed from the

modeling confirms the colocalization of p85 (red), Gab2 (green), andβ (blue) in a single

integrated image.
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Figure 4.1: Non-hierarchical MRF modeling on experimental data with two proteins. The
first protein is a glycosylphosphatidylinositol-linked protein, Thy-1 (labeled with 10nm
particles), and the second is a linker for activation of T cells, LAT (labeled with 5nm par-
ticles). The MRF model has a 4-neighborhood system. Because only two proteins are
involved, the frequencies of the four-tuples and five-tuples of states can be computed di-
rectly from the observed data. The conditional probabilities of the MRF are computed
using Eq. 3.21. A Gibbs sampler is used to generate samples from the conditional distri-
bution of the MRF. The reconstruction depends on the grid sizeused to process the data.
Grid sizes of 20, 40 and 80 pixels are used to process and reconstruct samples in a), b) and
c). A real TEM image is shown in d).
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Figure 4.2: A multiscale MRF model and a (4+1)-neighborhood system.

Figure 4.3: Nearest neighbor distance histogram for the images in Figure 4.4.
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Figure 4.4: Multiscale MRF modeling on experimental data with two proteins. The first
protein is a glycosylphosphatidylinositol-linked protein, Thy-1 (labeled with 10nm parti-
cles), and the second is a linker for activation of T cells, LAT (labeled with 5nm particles).
a) A sample ofD(2) generated from the conditional p.m.f. ofD(2); b) a sample ofD(1)

after sampling from the conditional p.m.f. ofD(2,1); c) a sample ofD(0) after sampling
from the conditional p.m.f. ofD(1,0); and d) a real TEM image.
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Figure 4.5: Numbering of the sites in a (4+1)-neighborhood system.
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Figure 4.6: Realizations of the finest layer of the multiscaleMRF model generated with
specified (left) and estimated (right) conditional distributions.
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Figure 4.7: Multiscale MRF modeling for the first experiment involving three proteins
where only two are observable in any single sample. a) TEM image wherePLCγ1 (5nm,
green) and LAT (10nm, red) are observed; b) TEM image where LAT (5nm, red) and
β (10nm, blue) are observed; c) TEM image wherePLCγ1 (5nm, green) andβ (10nm,
blue) are observed; and d) a reconstruction computed using Gibbs sampling that shows the
distributions of all three proteins.
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Figure 4.8: Multiscale MRF modeling for the second experiment involving three proteins
where only two are observable in any single sample. a) TEM image where Gab2 (5nm,
green) andβ (10nm, blue) are observed; b) TEM image where Gab2 (5nm, green) and p85
(10nm, red) are observed; c) TEM image where p85 (5nm, red) and β (10nm, blue) are
observed; and d) a reconstruction computed using Gibbs sampling that shows the distribu-
tions of all three proteins.
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In all of the experiments that have been performed so far, MRFswith a 4-neighborhood

system have been used. A larger neighborhood system will improve the quality of the

reconstruction computed using Gibbs sampling. However, asthe size of the neighborhood

system increases, the number of unknown variables becomes too large to be solved using

SNOPT. In this chapter, the Markov-Gibbs equivalence is exploited to utilize a larger

neighborhood system in the modeling. The Gibbs formulationwill be used to compute

the conditional probability for a MRF. By using the Gibbs formulation, the number of

unknown variables can be reduced. Consequently, a 8-neighborhood system can be used

in the modeling to improve the quality of reconstruction, asopposed to the 4-neighborhood

system that has been used in the previous experiments.

5.1 Gibbs Random Field

As mentioned in Section 2.1, Gibbs random fields and Markov random fields are formally

equivalent by the Hammersley-Clifford theorem. A GRF is defined in terms of functions

termedclique potentials. A clique C associated with a latticeS with a neighborhood

50



www.manaraa.com

Chapter 5. Gibbs Random Field Models

systemN is a subset of sites inS which satisfies either of the following conditions:

• C consists of a single site

• Every pair of distinct sites inC are neighbors,i.e., if s, r ∈ C ands 6= r thens ∈ Nr

andr ∈ Ns.

A random fieldX is said to be a GRF onS with respect toN if and only if its joint

distribution is of the following form

P (X = x) =
1

Z
exp(−U(x)) (5.1)

where

Z =
∑

x

exp(−U(x)) (5.2)

is a normalizing constant called thepartition functionandU(x) is theenergy function.

The energy

U(x) =
∑

C

VC(x) (5.3)

is a sum of clique potentialsVC(x) over all possible cliques. The clique potential depends

only on the values of the random variables associated with sites in the clique. Figure 5.1

a) and b) shows the cliques for the 4-neighborhood and 8-neighborhood systems.

Figure 5.1: Cliques for the a) 4-neighborhood and b) 8-neighborhood systems [26].
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A GRF ishomogeneousif VC(x) doesn’t depend on the relative position of the clique

C in S. It is said to beisotropic if VC is independent of the orientation ofC. A homo-

geneous and isotropic GRF is much simpler to specify than one without such properties.

Homogeneity is assumed in most MRF image modeling for the sakeof mathematical and

computational convenience. Isotropy is assumed in the problem treated here because the

spatial distributions of proteins on cell membranes are independent of orientation.

P (X = x) is the probability of a particular configuration,x. When the energy of the

configuration,U(x), is lower, it is more likely. By exploiting the Markov-Gibbs equiva-

lence, we can write the conditional probability in terms of clique potentials:

P (Xs = xs|Xt, t ∈ Ns) =
exp[−

∑

C∈Cs
VC(xs; xt, t 6= s, t ∈ C)]

∑

ys∈V
exp[−

∑

C∈Cs
VC(ys; xt, t 6= s, t ∈ C)]

(5.4)

whereCs is the set of cliques ofS which containss, V is the set of values that a random

variable can take. As shown in Figure 5.1b, a 8-neighborhoodsystem has 1-cliques, 2-

cliques, 3-cliques and 4-cliques. Using the Gibbs formulation, we only need to estimate

4-dimensional joint probability mass functions rather than 9-dimensional joint probability

mass functions. By exploiting isotropy, the number of unknown variables can be further

reduced, so that our MRF model can be based on a 8-neighborhoodsystem.

5.2 A GRF Model: 4-Neighborhood Systems

In this section, a GRF model with a 4-neighborhood system is formulated. The GRF model

is defined in term of clique potentials. The mathematical programming techniques used in

Chapter 3 and 4 are utilized to infer the clique potentials of ahidden random field for three

proteins from visible random fields where only two proteins are observable.
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5.2.1 Clique Potentials for a 4-Neighborhood System

GRFs with a 4-neighborhood system are used to model both the distribution and obser-

vation processes. As shown in Figure 5.1a, a 4-neighborhoodsystem has only 1-cliques

and 2-cliques. Because there are four possible states, the number of state and clique type

combinations is 36. In other words, 36 clique potentials arerequired to define a GRF with

a 4-neighborhood system. Under the assumption of isotropy,the number of unique clique

potentials can be reduced to 14 as shown in Table 5.1. Comparedwith 218 unknowns for a

MRF model with a 4-neighborhood system, the number of unknownparameters is reduced

dramatically.

CR CG CB CX CRR CRG CRB CRX CGR CGG

v1 v2 v3 v4 v5 v6 v7 v8 v6 v9

CGB CGX CBR CBG CBB CBX CXR CXG CXB CXX

v10 v11 v7 v10 v12 v13 v8 v11 v13 v14

Table 5.1: Fourteen clique potentials for a GRF with a 4-neighborhood system.

Like the clique potentials of Gibbs random fields used in image segmentation and tex-

ture models [11, 14], the potentials of 1-cliques control the percentage sites in given states

in the Gibbs random field, that is the marginal distribution of the random variable, while

the potentials of 2-cliques, 3-cliques, and 4-cliques control the higher-order statistics.

5.2.2 Parameter Estimation

The distribution process is represented by a GRF with a 4-neighborhood system that is

defined by the clique potentials presented in Table 5.1. However, in order to generate a

realization of the distribution process using the Gibbs sampler, the conditional probabili-

ties of the corresponding MRF are needed. The conditional probabilities are computed as
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follows:

P (Ds = ds|Dt, t ∈ Ns) =
exp[−V (ds) −

∑

t∈Ns
V2(ds, dt)]

∑

ds∈{R,G,B,X} exp[−V (ds) −
∑

t∈Ns
V2(ds, dt)]

(5.5)

whereV (ds) andV2(ds, dt) are potentials of the 1-cliques and 2-cliques. Using the con-

ditional probabilities, we can generate samples of the distribution process and observation

processes, compute the frequencies of four- and five-tuples, and estimate the conditional

probabilities from the samples as described in Section 3.3.

A ML estimation process analogous to that described in Section 3.3 is used to infer

the clique potentials of the distribution process. Letok be a realization of the observa-

tion processOk, and letV denote a vector of clique potentials, and letQk denote the

observation matrices. The conditional probabilityP (ok|V,Qk) is approximated by the

pseudo-likelihood:

P (ok|V,Qk) ≈
∏

s∈S

P ((ok)s|(ok)t, t ∈ Ns). (5.6)

The problem which must be addressed next is how to computeP ((ok)s|(ok)t, t ∈ Ns)

in terms of clique potentials. In Section 3.3,P ((ok)s|(ok)t, t ∈ Ns) is computed using

Eq. 3.27. We can rewrite this equation as

P((ok)s|(ok)t, t ∈ Ns)

=
∑

dt,t∈Ns

P((ok)s|ds)P(ds, dt, t ∈ Ns)
∏

t∈Ns
P((ok)t|dt)

P((ok)t, t ∈ Ns)
(5.7)

where

P(ds, dt, t ∈ Ns) = P(ds|dt, t ∈ Ns)P(dt, t ∈ Ns). (5.8)

We note thatP(ds, dt, t ∈ Ns) are the joint probabilities for a Gibbs random field based on

a 4-neighborhood system. As a result, we can use Eq.5.1 to compute the joint distribution

for this special Gibbs random field:

P(ds, dt, t ∈ Ns) =
1

Z
exp(−U(ds, dt, t ∈ Ns)) (5.9)
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whereZ is the partition function andU(ds, dt, t ∈ Ns) is the energy function of the

configuration{ds, dt, t ∈ Ns}. Because the lattice of the Gibbs random field is a 4-

neighborhood system, and because there are only cliques of size up to two,U(ds, dt, t ∈

Ns) can be calculated as follows:

U(ds, dt, t ∈ Ns) = V1(ds) +
∑

t∈Ns

V2(ds, dt) (5.10)

whereV1(ds) andV2(ds, dt) are potentials of the 1-cliques and 2-cliques. Therefore, we

can computeP ((ok)s|(ok)t, t ∈ Ns) using the following equation:

P((ok)s|(ok)t, t ∈ Ns)

=
∑

dt,t∈Ns

P((ok)s|ds)exp(−V1(ds) −
∑

t∈Ns
V2(ds, dt))

∏

t∈Ns
P((ok)t|dt)

Z × P((ok)t, t ∈ Ns)
.

(5.11)

The one problem which remains is how to compute the partitionfunction Z. A main

difficulty in using GRF models is in the calculation of the partition functions because

this requires summing over all possible configurations of random fields. Fortunately, the

lattice of the Gibbs random field is small and it is possible tosum over all configurations

to compute the partition function:

Z =
∑

{ds,dt,t∈Ns}

exp(−U(ds, dt, t ∈ Ns))

=
∑

{ds,dt,t∈Ns}

exp(−V1(ds) −
∑

t∈Ns

V2(ds, dt)) (5.12)

Equation 5.11 can be rewritten as:

P((ok)s|(ok)t, t ∈ Ns)

=
∑

dt,t∈Ns

P((ok)s|ds)exp(−V1(ds) −
∑

t∈Ns
V2(ds, dt))

∏

t∈Ns
P((ok)t|dt)

∑

{ds,dt,t∈Ns}
exp(−V1(ds) −

∑

t∈Ns
V2(ds, dt)) × P((ok)t, t ∈ Ns)

.

(5.13)
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In Eq. 5.13,P((ok)s|ds) andP((ok)t|dt) are known and are defined inQk. P((ok)t, t ∈

Ns) are the probabilities of four-tuples of symbols in the observation processes, and can

be estimated from samples of the observation processes. Consequently, the unknown vari-

ables areV1(ds) andV2(ds, dt). The maximum likelihood estimation ofV is achieved by

maximizing the logarithm of the probability that the process generated the visible samples

as a function ofV1(ds) andV2(ds, dt):

V̂ = arg max
V

∑

k∈{r,g,b}

log P(ok|V,Qk). (5.14)

There are also constraints on the clique potentials. Firstly, 1-clique potentials control the

marginal distribution of the random field, and these 1-clique potentials can be defined as

the logarithm of the corresponding marginal probabilities:

V1(ds) = − ln(P (ds)). (5.15)

Therefore, these 1-clique potentials are constrained by

∑

ds∈{R,G,B,X}

exp(−V1(ds)) = 1. (5.16)

Secondly, as described in Section 3.3, we can directly estimate the conditional probabil-

ities that involve at most two non-background states from the samples of the observation

processes. These known conditional probabilities impose constraints on the clique poten-

tials:

P (ds|dt, t ∈ Ns) =
exp[−V1(ds) −

∑

t∈Ns
V2(ds, dt)]

∑

ds∈{R,G,B,X} exp[−V1(ds) −
∑

t∈Ns
V2(ds, dt)]

(5.17)

whereP(ds|dt, t ∈ Ns) are the conditional probabilities that involve at most two non-

background states. Therefore, the fourteen unknown cliquepotentials are constrained by
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Eq. 5.17. The objective function is

f =
∑

k

log P(ok|V,Qk) (5.18)

=
∑

k

log

[

∏

s∈S

P((ok)s|(ok)t, t ∈ Ns)

]

(5.19)

=
∑

k

∑

(ok)t,t∈Ns

Hk((ok)t, t ∈ Ns) log P((ok)s|(ok)t, t ∈ Ns) (5.20)

wherek ∈ {r, g, b} andP((ok)s|(ok)t, t ∈ Ns) is defined in Eq. 5.13.Hk((ok)t, t ∈ Ns) is

the observed frequency of the four-tuple of symbols. The problem we need to solve is

maximize:f

subject to:

(i) the constraint defined by Eq. 5.16;

(ii) the constraints defined by Eq. 5.17.

SNOPT is used to solve the above problem also.

5.2.3 Results for the GRF Model: 4-Neighborhood Systems

To test the ML estimation for the GRF with a 4-neighborhood system, a distribution of

clique potentials is first specified. The conditional probabilities of the corresponding MRF

are then computed using Eq. 5.5. One hundred realizations ofthe GRF were generated

on a lattice of size600 × 740 by sampling from the conditional distribution using the

Gibbs sampler. For each realization, three visible sampleswere obtained by mapping the

hidden states in the realization to the observation symbolsusing the observation matrices.

By means of a raster scan (see Figure 3.3) over the visible samples, the frequencies of

the four-tuples and five-tuples of observation symbols werecomputed. 108 conditional

probabilities are estimated from these frequencies, and these were used to compute the
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clique potentials: Eq. 5.20 was used to create an objective function and maximization

subject to the constraints defined by Eq. 5.16 and Eq. 5.17 wassolved by SNOPT. This

results in good estimates which generate realizations which are visually very similar to

those generated using the specified clique potentials (See Figure 5.2). The relative errors

of estimates are shown in Table 5.2.

1 2 3 4
‖V̂−V‖2

‖V‖2
(×102) 3.2 13.5 20.0 5.7

Figure 5.2 a) 5.2 b) 5.2 c) 5.2 d)

Table 5.2: Relative errors of estimates for the GRF modeling for 4-neighborhood systems.

5.3 A GRF Model: 8-Neighborhood Systems

This section investigates whether the strategy described in Section 5.2 also works for Gibbs

random field models with a 8-neighborhood system.

As shown in Figure 5.1b, a 8-neighborhood system has cliquesof size up to four. Since

there are four possible states, the number of state and 1-clique type combination is 4. The

numbers of state and clique type combination are 64, 256 and 256 for 2-cliques, 3-cliques

and 4-cliques respectively. Therefore, 580 clique potentials are needed to define a GRF

with a 8-neighborhood system. This number is already reduceddramatically, compared

with 19400 unknown variables for a MRF with a 8-neighborhood system. By assuming

isotropy, the number of unique clique potentials can be further reduced. For examples, the

vertical, horizontal and diagonal 2-cliques are all equal under the assumption of isotropy.

The number of unique clique potentials required to define a GRFwith a 8-neighborhood

system can be reduced to 69 under the isotropic assumption.

The conditional probabilities of the corresponding MRF witha 8-neighborhood system
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can be computed in terms of clique potentials as follows:

P (Ds = ds|Dt = dt, t ∈ Ns) =
exp(−U(ds))

∑

ds∈{R,G,B,X} exp(−U(ds))
(5.21)

where

U(ds) = −V1(ds) −
∑

t∈Ns

V2(ds, dt) −
∑

t,u∈Ns

V3(ds, dt, du)

−
∑

t,u,v∈Ns

V4(ds, dt, du, dv) (5.22)

and whereV1(ds), V2(ds, dt), V3(ds, dt, du), andV4(ds, dt, du, dv) are potentials of the 1-

cliques, 2-cliques, 3-cliques and 4-cliques respectively. Using the conditional probabili-

ties, we can generate samples of the distribution process and observation processes, and

can compute the frequencies of eight- and nine-tuples of observable symbols, and can

estimate the conditional probabilities from these samplesas before.

The mathematical programming technique used to estimate the clique potentials of

a GRF with a 8-neighborhood system is analogous to that used for the GRF with a 4-

neighborhood system. To approximate the conditional probability P (ok|V, Qk) using

pseudo likelihood, the joint probabilities of a Gibbs random field with a 8-neighborhood

system are calculated using Eq. 5.9. The energy function is then computed using Eq. 5.22.

The partition function is computed using the following equation:

Z =
∑

exp[−V1(ds) −
∑

t∈Ns

V2(ds, dt) −
∑

t,u∈Ns

V3(ds, dt, du)

−
∑

t,u,v∈Ns

V4(ds, dt, du, dv)]

In addition, there is a constraint on 1-clique potentials

∑

ds∈{R,G,B,X}

exp(−V1(ds)) = 1. (5.23)

Finally the constraints imposed by the conditional probabilities that involve at most two

non-background states are defined by Eq. 5.21. The mathematical programming problem

is solved by SNOPT.
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Four experiments have been performed to test the ML estimation for GRFs with a 8-

neighborhood system. Figure 5.3 shows the results for the four experiments. The estimates

are good and result in realizations which are visually very close to those generated using

the specified clique potentials. The relative errors of estimates are shown in Table 5.3.

1 2 3 4
‖V̂−V‖2

‖V‖2
(×102) 2.95 34.2 22.8 10.1

Figure 5.3 a) 5.3 b) 5.3 c) 5.3 d)

Table 5.3: Relative errors of estimates for the GRF modeling with a 8-neighborhood sys-
tem.

5.4 A Multiscale GRF Model

In this section, a multiscale GRF model is built. Each layer inthis model is modeled as a

GRF with a 8-neighborhood system.

As was true of the multiscale MRF model described in Section 4.1, there is a pyramid

with three layers in the GRF model. Each site in a coarse layer is a parent of four sites in

the fine layer beneath it. The layers from coarse to fine are denoted asL(2), L(1), andL(0).

For each layer, there is a corresponding distribution process,D(i) wherei ∈ {2, 1, 0}. Each

of these is modeled as a GRF with a 8-neighborhood system. Furthermore, two additional

distribution processes are used to model the correlation between the values of sites in one

layer and those in the layer beneath it:D(2,1) betweenL(2) andL(1), andD(1,0) between

L(1) andL(0). Both of these are modeled as GRFs with a (8+1)-neighborhood system,

where eight neighbors are in the lower layer and the ninth neighbor is their parent in the

layer above (Figure 5.4a). There are also three corresponding observation processes for

each of the distribution processes:O
(2)
k , O

(1)
k , O

(0)
k , O

(2,1)
k , andO

(1,0)
k wherek ∈ {r, g, b}.

The value of a site at a given scale depends not only on its parent in the layer above but
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also on its neighbors at the same scale. Multi-resolution representations of the observed

data at three scales are realizations ofO(i), i ∈ {2, 1, 0}, and data between two scales

are realizations ofO(2,1) andO(1,0). We can infer the clique potentials ofD(i) from O
(i)
k

using the process described in Section 5.3. Furthermore, ifwe can estimate the clique

potentials ofD(2,1) from O
(2,1)
k , andD(1,0) from O

(1,0)
k , the Gibbs sampler can be then used

to generate sample random fields in a coarse-to-fine manner.

5.4.1 Parameter Estimation: a (8+1)-Neighborhood System

In order to apply the multiscale GRF model to experimental data, the clique potentials

of the hidden GRF with a (8+1)-neighborhood system first need to be estimated from the

visible fields. The cliques of a (8+1)-neighborhood system also have to be defined. As in

the MRF multiscale model, isotropy is only enforced within layers. Figure 5.5 shows the

cliques for a (8+1)-neighborhood system. The first row showscliques with sites from only

one layer, which are the same as the cliques of the 8-neighborhood system. The second

row shows a clique with sites from two layers. There is only one 2-clique with sites from

two layers because only site 9 in the lower layer is a neighborof site 0 in the upper layer.

Under the assumption of isotropy, there are 69 unique cliquepotentials for cliques in the

first row of Figure 5.5. For the 2-clique in the second row of Figure 5.5, there are 16

unique clique potentials. As a result, the total number of unique clique potentials needed

to define a GRF with a (8+1)-neighborhood system is 85. Using these clique potentials,

the conditional probabilities of the corresponding MRF witha (8+1)-neighborhood system

can be calculated as before.

A similar strategy to that described in Section 5.2.2 is adopted to solve the ML esti-

mation problem. The sites are numbered in a (8+1)-neighborhood system in the manner

shown in Figure 5.4 b). Using this numbering scheme, a ten-tuple〈r, q, p, o, n,m, l, k, j, i〉
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can be used to denote the joint event that

D
(u,w)
9 , D

(u,w)
8 , D

(u,w)
7 , D

(u,w)
6 , D

(u,w)
5 , D

(u,w)
4 , D

(u,w)
3 , D

(u,w)
2 , D

(u,w)
1 , D

(u,w)
0

take the values ofr, q, p, o,m, l, k, j, i respectively, and a nine-tuple〈q, p, o,m, l, k, j, i〉

can be used to denote the joint event that

D
(u,w)
8 , D

(u,w)
7 , D

(u,w)
6 , D

(u,w)
5 , D

(u,w)
4 , D

(u,w)
3 , D

(u,w)
2 , D

(u,w)
1 , D

(u,w)
0

take the values ofq, p, o,m, l, k, j, i respectively, whereu denotes an upper layer andw

denotes a lower layer. For the sake of notation, the prime symbol is used to denote(u,w).

The conditional probability can then be estimated as follows:

P (D ′
9 |D

′
8 , D

′
7 , D

′
6 , D

′
5 , D

′
4 , D

′
3 , D

′
2 , D

′
1 , D

′
0)

≈
H(〈n,m, l, k, j, i〉)

H(〈m, l, k, j, i〉)
(5.24)

whereH are histograms of the tuples. The probability of a realization of the observation

process,o ′
k, givenV andQk is approximated as:

P(o ′
k|V,Qk) ≈

∏

s∈S(w)

P((o ′
k)s|(o

′
k)t, t ∈ Ns) (5.25)

where

P((o ′
k)s|(o

′
k)t, t ∈ Ns)

=
∑

d ′

s ,d ′

t ,t∈Ns

exp(−U(d ′
s , d

′
t , t ∈ Ns))

∏

t∈{s}∪Ns

P((o ′
k)t|d

′
t )

Z × P((o ′
k)t, t ∈ Ns)

(5.26)

and whereS(w) is the set of sites in the lower layer, andk ∈ {r, g, b}. In Eq. 5.26,

U(d ′
s , d

′
t , t ∈ Ns) is the energy function of the configuration{d ′

s , d
′
t , t ∈ Ns} and Z

is the partition function for a Gibbs random field with is a (8+1)-neighborhood system.

U(d ′
s , d

′
t , t ∈ Ns) can be computed as follows:

U(d ′
s , d

′
t , t ∈ Ns) = V1(d

′
s) +

∑

t∈Ns

V2(d
′
s , d

′
t ) +

∑

t,u∈Ns

V3(d
′
s , d

′
t , d

′
u)

+
∑

t,u,v∈Ns

V4(d
′
s , d

′
t , d

′
u, d

′
v) (5.27)
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whereV1(d
′
s), V2(d

′
s , d

′
t ), V3(d

′
s , d

′
t , d

′
u), andV4(d

′
s , d

′
t , d

′
u, d

′
v) are potentials of the 1-,

2-, 3- and 4-cliques. And the partition function of the Gibbsrandom field with a (8+1)-

neighborhood system can be calculated as follows:

Z =
∑

exp[−V1(d
′
s)−

∑

t∈Ns

V2(d
′
s , d

′
t ) −

∑

t,u∈Ns

V3(d
′
s , d

′
t , d

′
u)

−
∑

t,u,v∈Ns

V4(d
′
s , d

′
t , d

′
u, d

′
v)] (5.28)

In Eq. 5.26, Eq. 5.27, and Eq. 5.28, the unknown variables arethe clique potentials. The

maximum likelihood estimation ofV is achieved by maximizing the logarithm of the prob-

ability that the process generated the visible samples as a function of the clique potentials:

V̂ = arg max
V

∑

k∈{r,g,b}

log P(o ′
k|V,Qk). (5.29)

A constraint on 1-clique potentials also needs to be enforced:

∑

d ′

s∈{R,G,B,X}

exp(−V1(d
′
s)) = 1. (5.30)

In addition, as described in Section 3.3, it is possible to directly estimate the conditional

probabilities that involve at most two non-background states from the samples of the obser-

vation processes. These known conditional probabilities impose the following constraint

on the clique potentials:

P (d ′
s |d

′
t , t ∈ Ns) =

exp[−U(d ′
s , d

′
t , t ∈ Ns)]

∑

ds∈{R,G,B,X} exp[−U(d ′
s , d

′
t , t ∈ Ns)]

(5.31)

whereP(d ′
s |d

′
t , t ∈ Ns) are the conditional probabilities involving at most two non-

background states, andU(d ′
s , d

′
t , t ∈ Ns) are defined by Eq. 5.27. Therefore, the 85

unknown clique potentials are constrained by the constraints defined by Eq. 5.31. The
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objective function is

f =
∑

k

log P(o ′
k|V,Qk) (5.32)

=
∑

k

log





∏

s∈S(w)

P((o ′
k)s|(o

′
k)t, t ∈ Ns



 (5.33)

=
∑

k

∑

(o ′

k
)t,t∈Ns

Hk((o
′
k)t, t ∈ Ns) log P((o ′

k)s|(o
′
k)t, t ∈ Ns) (5.34)

wherek ∈ {r, g, b} andP((o ′
k)s|(o

′
k)t, t ∈ Ns) is defined in Eq. 5.26.Hk((o

′
k)t, t ∈ Ns) is

the observed frequency of the nine-tuple of symbols. The problem we need to solve is

maximize:f

subject to:

(i) the constraint defined by Eq. 5.30;

(ii) the constraints defined by Eq. 5.31.

SNOPT is used to solve this problem also.

Five experiments have been performed to examine the qualityof estimation. Clique

potentials for a GRF with a (8+1)-neighborhood system were first specified, and the con-

ditional probabilities for the corresponding MRF were computed. 100 realizations of the

GRF were generated on a two layer resolution pyramid consisting of a lattice of size

300 × 370 above a lattice of size600 × 740 by sampling from the conditional distribu-

tion using the Gibbs sampler. For each realization, three visible samples were obtained by

mapping the hidden states in the realization to the observation symbols using the observa-

tion matrices. By means of a raster scan (see Figure 5.4 b)) over the visible samples, the

frequencies of the nine-tuples and ten-tuples of observation symbols were computed. To

estimate the clique potentials, Eq. 5.34 was used to create an objective function which was

maximized subject to the constraints described above usingSNOPT. Table 5.4 shows the
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relative errors of the estimates in terms of matrix 2-norm for the five experiments. Like

the GRF model with a 8-neighborhood system, there are errors in the estimates. It is also

likely that the errors are due to the fact that the visible fields are consistent with many dif-

ferent hidden distributions. As demonstrated in Section 5.4.2, although there were errors

in the estimates of the clique potentials of the GRF with a (8+1)-neighborhood system, the

multiscale GRF model worked well when applied to synthesizedand experimental data.

1 2 3 4 5
‖V̂−V‖2

‖V‖2
(×102) 15.8 37.1 58.5 44.4 74.2

Table 5.4: Relative errors of estimates for GRFs with a (8+1)-neighborhood system.

5.4.2 Results on Synthesized Data

The multiscale GRF model is first applied to synthesized data where the ground truth is

known. The clique potentials ofD(2), D(2,1), andD(1,0) are specified. Using these clique

potentials, the conditional probabilities of the corresponding MRFs are computed. A

Gibbs sampler is then used to generate samples from the conditional distributions through

a coarse-to-fine pass in the manner described in Section 4.1.The three scales used to gen-

erate the samples are 80, 40 and 20 pixels. The coordinates ofall three proteins at the finest

layer in the samples are exported as data. The coordinates ofR are eliminated to generate

a set of data whereR is missing. In an analogous way, a set of data whereG is missing and

a set of data whereB is missing are obtained. The data sets are processed at the same three

scales used to generate them. The data sets at scale of 80 pixels are regarded as samples

of O
(2)
k and are used to estimate the clique potentials ofD(2). The data sets at scales of 80

and 40 pixels are used to estimate the clique potentials ofD(2,1). The data sets at scales of

40 and 20 pixels are used to estimate the clique potentials ofD(1,0). Finally, the estimates

of the clique potentials ofD(2), D(2,1), andD(1,0) are used to generate samples by means
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of Gibbs sampling in a coarse-to-fine manner as before. This produces satisfactory results.

As shown in Figure 5.6, the samples of the finest layer generated from GRFs with the

specified and estimated clique potentials are visually verysimilar.

5.4.3 Results on Experimental Data

The multiscale GRF model has also been applied to the same two sets of experimental

data that were used to test the multiscale MRF model. The first experiment involves three

signaling species in rat basophilic leukemia cell line 2H3 mast cells: high-affinity IgE

receptorβ subunit (β), linker for activation of T cells (LAT), and phospholipaseCγ iso-

form 1 (PLCγ1). In the second experiment, we are still interested in the FcǫRI β subunit

but two different signaling species, Grb2-binding protein2 (Gab2) and the p85 subunit

of phosphatidylinositol 3-kinase (p85 of PI 3-kinase) are added. The data are processed

in an analogous way as in Section 4.4, except that the multiscale GRF model is used to

reconstruct samples from the data. Figure 5.7 a) shows a sample reconstructed from the

first experiment data. It also demonstrates both the colocalization of PLCγ1 (green) with

LAT (red) and the segregation of LAT/ PLCγ1 fromβ (blue) in a single integrated image.

Figure 5.7 c) shows a sample reconstructed from the modelingon the second experiment

data. It also confirms the colocalization of p85 (red), Gab2 (green), andβ (blue) in a single

integrated image. Compared with samples reconstructed by MRFmodeling (Figure 5.7 b)

and d)), the cluster sizes in samples generated by GRF modeling data are larger and the

samples from the GRF modeling are marginally better than those of the MRF modeling.

5.4.4 Comparison of MRF and GRF Modeling Quality

Kullback-Leibler (KL) divergence is a non-symmetric measure of the difference between

two probability distributions. In this section, the quality of MRF and GRF modeling is

measured in terms of KL divergence computed using samples from the modeling. Syn-
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thesized data of MRF modeling with a 4-neighborhood system and GRF modeling with

a 8-neighborhood system are used in the computation. It is desirable to use experimental

data. However, it is difficult to use them because, firstly, the ground truth is not known,

and secondly, the available experimental data are too sparse to accurately estimate the KL

divergence of the probability distributions.

Let P (x) represent a true distribution of data. In the case of modeling on synthesized

data, this is the distribution defined by the specified parameters. LetQ(x) denote an

approximation ofP (x). It is the distribution defined by the estimated parameters for the

synthesized data. The KL divergence ofQ from P is defined to be

DKL(P ||D) =
∑

x

P (x) log
P (x)

Q(x)
. (5.35)

200 samples are first generated using the specified parameters andP (x) are estimated

using these samples. Parameters estimated from MRF/GRF modeling are then used to

generated 200 samples. TheQ(x) are calculated using these samples. The KL divergence

of Q from P is computed using Eq. 5.35. The KL divergences for three setsof samples

from MRF and GRF modeling are shown in Table 5.5. It is clear thatthe larger neighbor-

hood systems in the GRF modeling result in better reconstruction quality in terms of KL

divergence.

1 2 3
MRF modeling 0.5012 0.4890 0.2284
GRF modeling 0.0653 0.0572 0.0273

Table 5.5: KL divergences for samples of MRF and GRF modeling.
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(a)

(b)

(c)

(d)

Figure 5.2: Realizations from the GRF model with specified (left) and estimated (right)
clique potentials. The GRF model has a 4-neighborhood system.
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(a)

(b)

(c)

(d)

Figure 5.3: Realizations from the GRF model with specified (left) and estimated (right)
clique potentials. The GRF model has a 8-neighborhood system.
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Figure 5.4: A multiscale GRF model: a) A (8+1)-neighborhood system and b) numbering
of sites in the neighborhood system.

Figure 5.5: Cliques for a (8+1)-neighborhood system. The four cliques with sites from one
layer are in the first row and the single clique with sites fromtwo layers is in the second
row.

70



www.manaraa.com

Chapter 5. Gibbs Random Field Models

Figure 5.6: Realizations of the finest layer of the multiscaleGRF model generated from
GRFs with the specified (left) and estimated (right) clique potentials.
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Figure 5.7: Multiscale GRF modeling of the experimental data. a) A reconstruction com-
puted from the multiscale GRF modeling that shows the distributions ofβ (blue), LAT
(red), andPLCγ1 (green); b) A reconstruction computed form the multiscale MRF mod-
eling that shows the distributions ofβ (blue), LAT (red), andPLCγ1 (green); c) A re-
construction computed from the multiscale GRF modeling thatshows the distributions of
β (blue), p85 (red), and Gab2 (green); d) A reconstruction computed form the multiscale
MRF modeling that shows the distributions ofβ (blue), p85 (red), and Gab2 (green).
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Conclusion

6.1 Contributions

A novel approach has been described for reconstructing spatial relationships between three

proteins on cell membranes from samples showing relationships between only two pro-

teins. This approach utilizes a multiscale hidden Markov random field model where math-

ematical programming techniques are used to deduce the conditional distributions. To our

knowledge, we are the first to use Markov random fields to modelthe spatial distribution

of proteins on cell membranes. The application of our approach to synthesized data has

demonstrated that the multiscale MRF model is good at characterizing both short and long

range statistical properties and that the spatial relationships among three proteins can be

reliably estimated. The application to experimental data has provided the first maps of the

spatial relationship between groups of three different signaling molecules. The ability to

analyze the spatial organization and dynamics of multiple membrane proteins during sig-

naling is a critical step towards a more complete understanding of the spatial and temporal

regulation of signal transduction pathways.

By exploiting the Markov-Gibbs equivalence, 8-neighborhood systems have been uti-
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lized in the multiscale GRF modeling. By imposing the very reasonable constraint of

statistical isotropy, the number of parameters is reduced and the consistency of the model

parameters is improved. Application of the multiscale GRF model to synthesized and ex-

perimental data shows that the quality of reconstruction has been improved. In addition,

it is easier to obtain biological insights when the results are interpreted in term of clique

potentials. Using clique potentials, combined with MRF modeling’s ability to derive con-

fidence intervals, it is possible to provide quantitative measurements of co-clustering for

molecular species.

6.2 Future Research Directions

As shown in the completed work, the interactions among threeproteins can be reliably

estimated from observations showing interactions betweenonly two proteins using the

multiscale models. However, there are still many issues to be addressed.

6.2.1 Labeling Efficiency

Labeling efficiencyis used to denote the percentage of a protein labeled by gold parti-

cles in a biological experiment. In the experiments we have done so far, it is assumed

that all proteins of interest on cell membranes are labeled by gold particles,i.e., labeling

efficiencies of gold particles are all 100% . Unfortunately,the labeling efficiencies in ex-

periments using nanoprobes are typically less than 100%. Because of their smaller sizes,

5nm gold particles have better labeling efficiency than 10nmgold particles. For some pro-

teins whose populations are known, we estimated labeling efficiencies using gold particle

labeling data. These experiments have shown that the labeling efficiencies of 5nm gold

particles are from 70% to 90% while the labeling efficienciesof 10nm gold particles are

typically less than 50%. We propose to include the labeling efficiency in the observation
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matrices. Consequently, three observation matrices,Qr, Qg, andQb, are written as:

Qr =















0 0 0 0

0 pg
r 0 0

0 0 pb
r 0

1 1 − pg
r 1 − pb

r 1















Qg =















pr
g 0 0 0

0 0 0 0

0 0 pb
g 0

1 − pr
g 0 1 − pb

g 1















Qb =















pr
b 0 0 0

0 pg
b 0 0

0 0 0 0

1 − pr
b 1 − pg

b 1 1















wherepj
i is the labeling efficiency of proteinj in experiments where proteini is missing.

Initially, it will be assumed that the labeling efficienciesare known. Quantitative mea-

surements of protein populations and cell surface areas canbe performed by our collabora-

tors at the UNM Cancer Research Center, and labeling efficiencies can be estimated using

gold particle labeling data. These labeling efficiencies will then be put into the above ob-

servation matrices and used to model the spatial distributions of proteins. This will allow

us to determine whether the mathematical programming techniques developed in this dis-

sertation will also work for parameter estimation when the labeling efficiencies are not

100%.

Unfortunately, some protein populations are not known. In this case, labeling efficien-

cies will be treated as hidden data in the modeling and the EM algorithm can be used to

estimate the hidden process parameters.
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6.2.2 Using the EM Algorithm to Estimate Parameters

When labeling efficiencies are unknown, more information is needed to estimate the hid-

den process parameters. As before, realizations of the observation processok are called

incomplete data. And the observation matricesQk are also hidden data. It is assumed that

a complete data set(ok,Qk) exists and the complete-data likelihood can be computed as

P (ok,Qk|V) = P (ok|Qk,V)P (Qk|V) (6.1)

whereV is a vector of clique potentials andk ∈ {r, g, b}. Note that this complete-data

likelihood is in fact a random variable becauseQk is unknown and governed by an under-

lying distribution. The hidden process potentials can be computed by

V̂ = arg max
V

log[P (ok|Qk,V)P (Qk|V)]. (6.2)

The EM algorithm is an interactive procedure for solving Eq.6.2. In this specific case,

each iteration consists of the following two steps.

1. E-step: Calculate the expectation oflog P (ok|Qk,V)P (Qk|V) with respect toQk

and conditioned on the observed dataok and the current estimateVi of clique po-

tentials. The expectation is computed as:

Q(V|Vi) = E
[

log P (ok|Qk,V) + log P (Qk|V)|ok,V
i
]

= E
[

log P (ok|Qk,V)|ok,V
i
]

+ C (6.3)

while C is an unknown constant.

2. M-step: Compute

Vi+1 = arg max
V

Q(V|Vi)

= arg max
V

E
[

log P (ok|Qk,V)|ok,V
i
]

(6.4)
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The expectation in Eq.6.3 is computed as follows:

E
[

log P (ok|Qk,V)|ok,V
i
]

=

∫

Qk

log P (ok|Qk,V)P (Qk|ok,V
i) dQk (6.5)

whereP (ok|Qk,V) can be calculated as described in Chapter 5 andP (Qk|ok,V
i) is the

posterior distribution ofQk given the data and the previous estimate ofV. A major dif-

ficulty here is how to specify this posterior distribution. Using prior knowledge from

biological experiments, mean values and ranges of labelingefficiencies can be guessed. It

is reasonable to assume that this posterior distribution ofQk is a multivariate Gaussian dis-

tribution. With this assumption, the expectation can be computed. An initial set of clique

potentials can be estimated using the method described in Chapter 5 by assuming 100%

labeling efficiencies. The EM algorithm can then be used to estimate clique potentials in

the case that the labeling efficiencies are unknown.

6.2.3 Exploring More Observation Matrices

The three observation matrices used in our modeling are veryconstrained. The constraints

on the observation matrices can be further relaxed to obtainmore observation processes.

For example, we could ask our collaborators to carry out experiments where half of the

5nm gold particles are used to label proteinR, the other half of the 5nm gold particles

are used to label proteinG, and all of the 10nm gold particles are used to label proteinB.

The experiments are realizations of an observation processwhich is related to the hidden

process through the following observation matrix:

Qi =















0 0 0 0

.5 .5 0 0

0 0 1 0

.5 .5 0 1















where labeling efficiencies are assumed to be 100%. In this way, we can obtain more

observation processes and impose more constraints on the hidden process. As a result, the
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quality of hidden process parameter estimates can be improved. We propose to use more

observation matrices to improve the modeling quality for the three protein reconstruction

problem.

Because there are more constraints on the hidden process whenmore observation ma-

trices are used, we can possibly extend our models to more than three proteins. We propose

to investigate whether the interactions among more than three proteins can be reliably es-

timated when more observation processes are introduced.

An observation matrix is a channel over which information ofa hidden process is

transmitted,i.e., the hidden random fieldD is observed as a random fieldOi over the

observation matrixQi. The mutual information forQi is the mutual information of two

random fieldsD andOi, which can be computed as:

I(D; Oi) =
∑

d∈D

∑

o∈Oi

P (d, o) log
P (d, o)

P (d)P (o)
, (6.6)

whereP (o, d) is the joint probability distribution function ofD andOi, andP (d) andP (o)

are the marginal probability distribution functions ofD andOi respectively. We propose to

compute the mutual information for observation matrices and design observation matrices

with maximum information channel capacity by maximizing the mutual information [39]

for sets of observation matrices. We will use these observation matrices to design particle

labeling experiments to obtain better reconstruction of interactions among proteins.
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Appendix A

Results of the Markov chain modeling

A.1 The first-order Markov chain model
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Appendix A. Results of the Markov chain modeling

P P̂

1

.40885 .36921 .17410 .04320

.12930 .52834 .10139 .77892

.31119 .08227 .24039 .09638

.15066 .02019 .48412 .08151

.40896 .36921 .17415 .04332

.12922 .52832 .10152 .77888

.31103 .08230 .24050 .09632

.15080 .02018 .48383 .08148

2

.00391 .09946 .08653 .28725

.76572 .34447 .52591 .53052

.11284 .41860 .01115 .13215

.11753 .13747 .37642 .05008

.00392 .09942 .08651 .28724

.76580 .34451 .52578 .53048

.11286 .41862 .01119 .13221

.11742 .13745 .37652 .05007

3

.91308 .01150 .05131 .99800

.05303 .10345 .70939 .00148

.02554 .81201 .21349 .00031

.00835 .07304 .02580 .00022

.91310 .01149 .05135 .99800

.05304 .10355 .70931 .00147

.02552 .81186 .21348 .00031

.00834 .07310 .02585 .00022

4

.92364 .86406 .05311 .32127

.02656 .10318 .38505 .33645

.01700 .02302 .00515 .11821

.03281 .00974 .55670 .22407

.92364 .86408 .05300 .32098

.02654 .10320 .38536 .33643

.01700 .02297 .00525 .11814

.03282 .00975 .55638 .22445

5

.28942 .43960 .26739 .59277

.35661 .04516 .31161 .25504

.06877 .40161 .14996 .10364

.28520 .11364 .27104 .04855

.28941 .43961 .26748 .59285

.35664 .04512 .31159 .25505

.06877 .40150 .15002 .10363

.28518 .11377 .27091 .04846

6

.85000 .01000 .03000 .20000

.05000 .50000 .02000 .40000

.08000 .32000 .90000 .32000

.02000 .17000 .05000 .08000

.85001 .00997 .02999 .19997

.05006 .49973 .01998 .40034

.07994 .32014 .90006 .31988

.01999 .17016 .04997 .07981

7

.29000 .55000 .03000 .63000

.31000 .25000 .21000 .05000

.30000 .14000 .52000 .09000

.10000 .06000 .24000 .23000

.28985 .54995 .03003 .63009

.30998 .25023 .20985 .05005

.30014 .13990 .52015 .08995

.10003 .05993 .23997 .22990

Table A.1: Results for seven experiments of the first-order Markov chain model.P is the
transition matrix used to generate the hidden chains andP̂ is the estimate computed solely
from the statistics of the observed chains. The chain length, N = 7.01 × 107, and the
starting point,S = 1 × 105.
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Appendix A. Results of the Markov chain modeling

1 2 3 4 5 6 7
‖P̂−P‖2

‖P‖2
(×102) .037 .018 .014 .043 .023 .048 .033

Table A.2: Relative error of estimates for the first-order Markov chain modeling.

A.2 The second-order Markov chain model

1 2 3 4 5
P P̂ P P̂ P P̂ P P̂ P P̂

pbgr .0342 .0341 .0856 .0862 .0007 .0007 .0449 .0448 .0056 .0056
pxgr .4836 .4838 .1061 .1055 .0051 .0051 .1610 .1611 .2886 .2887
pgbr .0330 .0331 .1857 .1858 .0770 .0770 .6297 .6297 .0110 .0109
pxbr .0709 .0708 .0462 .0461 .3153 .3151 .0070 .0070 .6237 .6238
pgxr .1771 .1771 .4563 .4557 .3132 .3132 .0263 .0263 .3544 .3544
pbxr .4308 .4311 .1070 .1051 .0038 .0038 .0366 .0368 .0028 .0028
pxxr .0823 .0821 .1012 .1036 .1565 .1566 .0468 .0466 .0009 .0007
prbg .8868 .8865 .8332 .8337 .6428 .6431 .6621 .6622 .7712 .7711
pxbg .0234 .0236 .1280 .1275 .1991 .1987 .0485 .0485 .0717 .0717
prxg .3018 .3019 .0470 .0464 .1214 .1214 .2215 .2215 .2443 .2442
pbxg .1526 .1528 .6111 .6089 .1217 .1216 .4911 .4913 .1529 .1529
pxxg .0596 .0594 .2510 .2538 .2072 .2074 .0717 .0715 .0043 .0042
prxb .4922 .4923 .6591 .6581 .6789 .6787 .5125 .5124 .1198 .1198
pgxb .3442 .3443 .2269 .2259 .1149 .1149 .4691 .4689 .5030 .5033
pxxb .1559 .1556 .0585 .0605 .0210 .0214 .0019 .0020 .0580 .0579
prxx .5287 .5281 .3439 .3467 .1220 .1222 .6773 .6777 .1735 .1732
pgxx .3714 .3713 .5832 .5863 .1648 .1650 .1969 .1968 .6322 .6298
pbxx .0797 .0777 .0113 .0131 .4806 .4804 .0805 .0770 .0812 .0805
pxxx .0202 .0228 .0616 .0539 .2327 .2324 .0454 .0486 .1130 .1165

Table A.3: Results of five experiments for the second-order Markov chain modeling with
symmetry. The chains used in the modeling are of lengthN = 7.01× 108 and the starting
point isS = 1.0 × 106.
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Appendix A. Results of the Markov chain modeling

1 2 3 4 5
‖P̂−P‖2

‖P‖2
(×102) .23 .68 .07 .33 .31

Table A.4: Relative error of estimates for the second-order Markov chain modeling.
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