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Abstract

Cell membranes display a range of receptors that bind ligandsctivate signaling path-
ways. Signaling is characterized by dramatic changes inlmeme molecular topography,
including the co-clustering of receptors with signalingletnlles and the segregation of
other signaling molecules away from receptors. Electroarescopy of immunogold-
labeled membranes is a critical technique to generate tapbgal information at the
5-10 nm resolution needed to understand how signaling eamaplassemble and function.
However, due to experimental limitations, only two moleswudpecies can usually be la-
beled at a time. A formidable challenge is to integrate expental data across multiple
experiments where there are from 10 to 100 different pretaimd lipids of interest and
only the positions of two species can be observed simultasigoAs a solution, Markov
random field (MRF) modeling is proposed to reconstruct theidigion of multiple cell
membrane constituents from pair-wise data sets. MRFs arevarfpd mathematical for-

malism for modeling correlations between states assatiaitéy neighboring sites in spa-

vii
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tial lattices. The presence or absence of a protein of afgpégie at a point on the cell
membrane is a state. Since only two protein types can be\aiser., those bound to
particles, and the rest cannot be observed, the probleneisfoteducing the conditional
distribution of a MRF with unobservable (hidden) states. eslarmultiscale MRF model
has been developed and mathematical programming tectatiguwe been used to infer the
conditional distribution of a MRF for proteins of three tygfesm observations showing
the spatial relationships between only two types. Appilicato synthesized data shows
that the spatial distributions of three proteins can bebdi estimated. Application to ex-
perimental data provides the first maps of the spatial melatip between groups of three
different signaling molecules. Initially, a 4-neighbodibsystem was used in the MRF
modeling. In order to improve reconstruction quality, @&r8-neighborhood system was
subsequently used in a multiscale Gibbs random field (GRR)dtation by exploiting the
Markov-Gibbs equivalence. Application of the multiscalRlEmodel to synthesized and
experimental data shows that the quality of reconstruasdmproved. This work is an
important step towards a more complete understanding ofloreame spatial organization

and dynamics during signaling.

viii
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Chapter 1

Introduction

Cell membranes display a range of receptors that bind smgpatolecules and initiate
transmembrane responses. Receptors and the signalinghprat®l lipids they activate
are distributed non-randomly in membranes; in additioogp¢or activation is accompa-
nied by dramatic reorganization of membrane componentsefisag by recruitment of
new signaling proteins from the cytoplasm to the membrae 44]. Strict regulation
of signal transduction from the outer cell surface to the@plgsm and nucleus is crucial
for cell survival, differentiation, proliferation and ahactivities. Unregulated signaling
is an important component in the pathogenesis of many disgasdtuding cancer. Nev-
ertheless, many aspects of how the cell maintains spatipdgeal control of signaling
pathways remain unclear. Correlating the activities of pemes and signaling proteins
and lipids with their spatial distribution and dynamics ssential to better understand the

regulation of cell signaling.

To observe the topographical events associated with gelasing, several groups have
generated high resolution spatial maps of colloidal goldigdas marking receptors and
signaling proteins and lipids in native membranes [22, 3348, 42, 43, 44, 45, 47]. In

this technique, cell monolayers adherent to glass copsralie inverted onto nickel elec-
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Chapter 1. Introduction

tron microscopy grids that are precoated with a highly cadrgolymer, poly-L-lysine.
Pressure is applied briefly, and then the coverslips amdlifteaving cytoplasmic face-
up sheets of native membranes (see Figure 1.1). The sheefed lightly, and la-
beled with nanometer-sized electron-dense probes that leen functionalized, usually
with antibodies, to recognize specific signaling moleculégter labeling, membranes
are fixed more completely, counterstained with osmium aaehydracetate to label fea-
tures of the cell membrane like coated pits, air-dried, andged using transmission
electron microscopy (TEM). The TEM images are digitized @nobe coordinates are
extracted. The spatial distributions of the probes witlpees to each other and with re-
spect to membrane features such as clathrin-coated pitsamblae are subsequently
analyzed [17, 30, 31, 49]. In general, due to limitations gileable gold particle size,
only two different protein species can be labeled with canrf in the same experiment
(Figure 1.2). Experimentalists are exploring the use of nastal, semi-conductor, and
ceramic electron-dense nanoprobes with different shapespand the number of probes
than can be discriminated [1, 18]. However, even with these tools, the limited avail-
ability of antibodies raised in different species to labghsil pathway components makes
it difficult to substantially expand the number of probes tten be used in a single ex-
periment. Consequently, there is a need to integrate expetahdata across multiple
experiments. In this dissertation, Markov random field (MRi6deling is used to address

this problem.

MRFs provide a powerful and robust framework for modelingrelations between
states associated with neighboring sites in spatial &#tid@he first concept of MRF came
from the physicist Ernst Ising in the 1920s [23]. Ising triedlevise a mathematical model
to explain the experimental properties of ferromagneti¢emials. In his model, Ising
made the simplifying assumption that only interactionsveetn neighboring bipoles need
be taken into account. Since the 1980s, MRFs have been bexwhe un several areas
of image analysis such as texture synthesis [9, 12, 32], émagtoration [4, 14], image

segmentation [11] and surface reconstruction [13]. Theesgof MRFs can be attributed
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Chapter 1. Introduction

EM Grid

Coverslip

Plasma
Membrane
on EM Grid

Figure 1.1: a) Lower the EM grid onto the cell on the coverdlipremove the EM grid;
c) produce fragments of the plasma membrane on the grid.

to their versatility as stochastic image models and to tbetfeat the Hammersley-Clifford

theorem [3] provides a simple way of specifying the jointlability distribution.

The goal of image modeling is to find a good representatiomefgray level distri-
bution of a given image. What is good often depends on the tas&ral. In most of the
work on MRF modeling in image processing, a key assumptiohas the information
contained in the local structure of images is sufficient ttawba good image representa-
tion. The local information is captured by a conditional lpability distribution because
the image gray level at a particular site depends only ongitghiboring pixels. There are
usually two ingredients in the MRF image modeling: pr@r andobservationprocess.
The prior processy, is a model of the unobserved original imagéis defined on the set
of image attributes that are of interest. For example, ireqatgserving image restoration,
X includes image gray levels and binary-valued edge labelgexture segmentatiok’
includes image gray levels and texture labels. The obsernvatocessy’, is a model of
the given image which is a noisy, blurred, or incompleteieersf the original image. The
MRF modeling fits well into a Bayesian estimation/inferenceadagm, where Bayes’ the-
orem is invoked to obtain the posterior probability digitibn of the original image given

the observation, and where a form of Bayesian estimationjrmanr a posterioriestima-
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Chapter 1. Introduction

Figure 1.2: 5nm and 10nm gold probes in the image of a TEM slide.

tion, is used to restore or to segment images.

The spatial distributions of proteins on cell membranesdatermined by the under-
lying physical and chemical interactions, including pnetprotein and protein-lipid inter-
actions. Usually, these interactions decrease quicklystartte increases. In other words,
these interactions are local. Therefore, local charastiesiare a good representation of
protein spatial distributions which are determined by laatractions. As a result, MRFs

are a good choice to characterize protein spatial distaobst Cell membranes can be

4
L 2 ] & I
AT I IL
n._JI__JL..w...-UJ-.I J
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Chapter 1. Introduction

modeled as a 2D lattice, and the presence or absence of anpobee specific type at a
point on the cell membrane is a state. Since only two proigiag can be observeide.,
those bound to particles, and the rest cannot be observegyrdiblem is one of deduc-
ing the conditional probability distribution of a MRF with abservable (hidden) states.
A question of significant importance is: What fraction of theditional probability dis-
tribution of the MRF modeling spatial relationships betwgeoteins of all types can be
inferred from particle preparations showing the spatiddtienships between only two
types? If the conditional probability distribution can lediably estimated, then the Gibbs
sampler [14] can be used to synthesize sample MRFs allowangdmplete set of protein

spatial relationships to be visualized.

The organization of this dissertation is as follows. Chaptgives a brief introduction
to MRF theory and Bayesian image analysis. It also reviewdeeleork. In Chapter
3, a quadruple stochastic model for modeling the proteiniapdistributions is first de-
scribed, and then first-order and second-order Markov sha® used to demonstrate that
the quadruple model is feasible. It then presents how théitonal probability distri-
bution of a MRF for proteins of three types can be deduced frbsevations showing
the spatial relationships between only two types. Howeberneighborhood system of
the MRF used in Chapter 3 is too small to obtain good results perexental data. To
solve this problem, a multiscale MRF model is developed in @rag. Application of
the multiscale MRF model to synthesized and experimental giaes satisfactory results.
In Chapter 5, the Markov-Gibbs equivalence is exploited tiizata larger neighborhood
system in the modeling. Results of applying the GRF modelstgyhthesized and exper-
imental data are then presented. Finally, Chapter 6 concarmediscusses future research

directions.
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Chapter 2

Background and Related Work

2.1 Markov Random Field

MRFs have several components: a lattiteith m sitess; a neighborhood systef” =
{N;|s € S}, whereN; is the subset of sites ifi which are the neighbors a&f a field of
random variable’ = { X;|s € S}, and a conditional probability mass function (p.m.f.),

P(X, = z4X; = z,t € N;). Each random variabl&, takes a value in a finite set

Q ={lL,...,l,} of possible statesX, = =, denotes the event thaf, takes the value
zs and (X; = z1, Xy = 29, ,X,, = z,,) denotes a joint event. The joint event is
abbreviated a{ = = in whichxz = {xy,25,--- ,2z,,} is a realization ofX. Therefore,

there is also a joint p.m.f2(X = z). Either the conditional p.m.f. or the joint p.m.f. can
be used to specify a MRF. The Markov property means that the atat site is dependent

only on those at its neighboring sites:
P(X,=a,X; =a4,t #£s,t €85) = P(X, =2, X; = x4, t € Nj). (2.1)
For example, the neighbor setof= (i, j) for a regular latticeS' is commonly defined as

No={r=(DeS:0<(k—39)2*+(1-75)7?*<o}, (2.2)
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Chapter 2. Background and Related Work

whereo is the order of the neighborhood system. Figure 2.1 a)-ayghe neighborhood
systems foo = 1, 2 and8. Alternatively, a neighborhood system can also be repteden
by the number of neighbors in it. For example, a first-ordeghmaorhood can also be

called a 4-neighborhood.

(a) (b) (c)

Figure 2.1: MRF neighborhood systems for sitec S: a) 4-neighborhood; b) 8-
neighborhood; and c) 24-neighborhood [26].

MRFs are often formulated &ibbs Random Field€GRFs), which are equivalent to
MRFs by the Hammersley-Clifford theorem [3]. In Section 5.%, gwe a brief introduc-

tion to Gibbs random fields.

2.2 Bayesian Image Analysis

When MRFs are used to model images, Bayesian methods are oftemusege analy-
sis [19, 14, 11]. The Bayesian approach has benefits in imaggsisand interpretation
because it permits the use of prior knowledge concerningitbation under study. Here,

a brief introduction to Bayesian image analysis is given.
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Chapter 2. Background and Related Work
2.2.1 Bayes’' Theorem

Bayesian methods are based on Bayes’ theorem (also known as’ Balgeor Bayes'’
law), which defines the relationship between the conditiand marginal probability dis-
tributions of two random variables. Let us consider thedssi-up in the context of image
restoration, an original image described by a random ps&gsand a given image rep-
resented by another random proc&ssThe original image is not observable; it can only
be observed through the given image which is a noisy or dwegsion of the original.
We want to restore the original image from the given image.eBatheorem relates their
conditional and marginal probabilities as follows:

P(Y|X)P(X)
PyY)

P(X) is theprior probability of X because it does not take into account any information

P(X|Y) = (2.3)

aboutY. P(X|Y) is called theposterior probability because it depends on the specified
value of Y. P(Y'|X) is called thdikelihood of Y with respect taX, indicating that the
valuez for which P(Y = y| X = ) is large is more “likely” to be the true value?(Y)

is theevidencdactor and can be viewed as a normalizing constant. Withié¢nminology,

the Bayes’ theorem can be informally expressed as:

likelihood X prior

posterior = (2.4)

evidence

In words, the posterior probability is proportional to th@guct of the prior probability
and the likelihood. Bayes'’s theorem provides the means thatam update or revise our
knowledge ofX in light of new information ofY”, both expressed in terms of a probability

distribution. For more detailed materials on Bayesian thebe reader is referred to [2].

2.2.2 Bayesian Analysis

The first aspect of Bayesian analysis involves the choiceeoptlor. In one interpretation

of Bayes’ theorem, the priaP(X) represents general information about the process
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i.e., the prior might be viewed as a way to restrictso that the posterior provides more
information aboutX than the likelihood. In this case, many different priors banused
in the analysis to investigate the range of possible outscmne the proper choice for the
prior depends on the problem domain. In Bayesian image dasaM&Fs are often used

as prior models.

The second aspect of Bayesian analysis deals with the use pb#terior probability.
When attempting to summarize the results of an analysis,ghtbe necessary to repre-
sentP(X|Y) in more concise terms. In the process of interpretation,esrformation
concerningP (X |Y) is lost. To achieve an optimal way to interpret the postgsrobabil-
ity, the Bayesian approach associates the costs with makingus kinds of errors in the
interpretation process. The assignment of the proper aostibn is usually a part of spec-
ifying the problem. When any answer other than the correcthasethe same increased

cost, the estimate is the value &fthat maximizes the posterior probability distribution:

~

X =argmax P(X|Y). (2.5)

This is the well-known maximuna posteriori (MAP) estimation. Since the paper of
Geman and Geman [14], many image analysis problems havefbewolated in this
MRF-MAP framework.

2.2.3 Gibbs Sampler

Gibbs sampling is a method for generating a sequence of sarmmaim the joint proba-
bility distribution of two or more random variables. The asated algorithm, called the
Gibbs sampler, was devised by Geman and Geman [14]. Gibbglisgnis applicable

when the joint distribution is not known explicitly, but tkenditional distribution of each
variable is known. It operates by generating a realizatiomfthe distribution of each ran-
dom variable in turn, conditional on the current values aghboring random variables.

Geman and Geman showed that the sequence of samples cangphiteekov chain, and
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the stationary distribution of the Markov chain is the desig joint distribution. Gibbs
sampling is well-adapted to sampling the joint distribotmf MRFs, because MRFs are

typically specified as conditional probability distribortis.

2.3 Related Work

2.3.1 Non-hierarchical MRF Models

Texture Models

MRFs have been used in computer vision and image procesgitgxtore synthesis [9,

12, 32], image segmentation [11], and image restorationd®&# In image processing, a
digital image is defined as a function of a two-dimensiondidat The value at a site in
the lattice is called the gray level of the image at that pdiekture is a spatially extended,
statistically homogeneous pattern of gray levels. If weiassthat the gray level of a pixel
only depends on those of its neighbors, textures can be ed@dsl MRFs. The states of
the MRF texture model are all possible gray levels. A samptaute is regarded as a
realization of the MRF model and is used to estimate the cmdik distribution of the

model through either parametric [9] or non-parametric rmé#h[12, 32]. Texture can be
synthesized by sampling from the conditional distributidiarge neighborhood systems
are required to capture the visual characteristics of araltiexture e.g, 24-neighborhood

and 48-neighborhood systems were used in [32] (see FigRye 2.

Image Restoration Models

In addition to MRFs where all states are observable, theralaochidden Markov models

which contain states that are not directly observable. & hetden models are flexible and

10
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powerful when used in applications such as image restoratial segmentation, because
many kinds of prior knowledge can be modeled. For examplea@@$] used a hidden
MRF to model the local characteristics of unobserved sampdges, assuming that pixels
close together tend to have the same or similar gray levedsa #econd example, Geman
and Geman [14] used antensity procesg$’ to characterize the variations of gray levels,
and aline processL to characterize the presence and orientation of edges. fidiea
image was modeled as a pair of hidden Markov processes; (F,L). F' is defined
over a lattice where each site corresponds to one image pixe@L is defined over a dual
lattice with sites centered between each vertical and botat pair of pixels (Figure 2.3).
The sites ofl. represent possible edges. The given image is a realizatiem a@bservable

processy’, which is modeled as a blurred and noisy version of the asigmage:
Y = W(H(F),N)

where U is an invertible operationH is a shift-invariant blurring matrix andv is an
independent noise field. The addition of the line processlies good performance
for finding the boundaries of arbitrary shapes. The pair ténsity and line processes
is flexible, for example, Tonazzirat al. [38] used it to solve a blind image separation

problem.

Image Segmentation Models

In image segmentation, hidden MRFs can be used to model egibere pixels have
similar gray values or are statistically homogeneous. Gwaengle is Derin and Elliott’s
two-level hierarchical GRF, which they used to model and sagmoisy and textured
images [11]. Derin and Elliott’s model was based omegion processX (the high level
process characterizing formation of homogeneous regians) atexture process!’ (the
low level process modeling textures in different regiomsnoisy or textured image was

modeled using an observable random fiéldwhich is defined in terms of hidden random

11
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fields, X andT'. Derin and Elliott adopted a specific class of GRF to model bHuthregion
process and the texture process. The GRF class specifiessttibudion in terms of the
8-neighborhood system, and assigns one parameter to tjiges with two or more sites.
The clique potentials are then defined as

—( ifall z,in C are equal

Ve(z) = _

¢  otherwise
where( is the parameter assigned for the clique typeAnd the potential for the single
site clique is defined aB-(z) = «; for z; = i wherei represents one of thedifferent
regions thatX can model. When parameters are properly chosen, the above [@§3H
good at modeling various regions and textures. Derin andtEWere interested in two
classes of images: noisy ones and textured ones. While tl@rpgpcesses are identical
for these two classes, the low level models are different.neisy images, the model is
Y = F(X) + N whereF is simply a mapping of the region type to the matching gray
level and NV is additive white noise. For textured images, the modétis= H(X) =
T whereH is a simple mapping of the region type to the correspondirtute. Derin
and Elliott developed a parameter estimation scheme fdefstate space GRF based on
histogramming and least squares fit. The scheme has theviejosteps: 1) Find the
relationship between the joint probability and the pararset2) use histogramming to
calculate these probabilities; 3) build an overdetermisystem of linear equations with

respect to probabilities and parameters; and 4) solve stersyusing the least squares fit.

Limitations of Non-hierarchical Markov Random Field Models

MAP estimation is commonly used to restore or segment imalgds? estimation finds
thex which maximizes the probability distribution &f conditioned on the datg P(X =

z|Y = y). The estimation is usually implemented as maximizing

log P(Y =y|X =2)+log P(X =) —log P(Y = v),

12
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where P(Y = y) is assumed to be constant. For the non-hierarchical MRFsistisd
thus far, exact MAP estimation is quite expensive. Consdtyepproximation methods
such as iterated conditional modes (ICM) [4], dynamic prograng [11], or simulated
annealing with Gibbs sampling [14] are used. Another difficwith non-hierarchical
MRFs is that the neighborhood systems need to be small betagse neighborhood
systems dramatically increase the number of parameterthantcbmplexity of the MAP
algorithms. Although these models perform well for the sadkscribed by the authors,

they have only a limited ability to characterize statidtmaperties at large spatial scales.

2.3.2 Hierarchical MRF Models

To address the problems associated with non-hierarchiocdéls, multiscale MRF models
were formulated and have been extensively discussed imiagd processing literature [5,
6, 20, 21, 24, 27, 29, 46[. For example, in Bouman and Shapiro’s multiscale MRF
(MSRF) model [6] for Bayesian image segmentation, there igiasef L random fields

at a range of scales or resolutions. At each scal#)e segmentation is modeled as a
hidden MRF,X®, defined on a latticeS®. X© is the base of the pyramid.e., it

is the random field at the finest scale with a lattice corredpmnto the image. Each
site at the next coarser scal¥(!, corresponds to four sites 6f®), etc. Bouman and
Shapiro assumed that the random field at each scale depelgdsnahe coarser random
field above it in the resolution pyramide., the sequence of random fields from coarse-
to-fine scales is a Markov chain. The image to be segmentedcchascterized by an
observable MRFY. The non-iterative method used by Bouman and Shapiro to se¢gmen
images is termed sequential MARSMAP) estimator. The SMAP algorithm consists of
two full passes through the pyramid. The SMAP algorithmsehaarformance comparable

to or better than that of MAP estimation by simulated anmgalh a non-hierarchical

lWe note that the two-level hierarchical GRF model in [11] is not multiscale Isecthere is
no correlation between the two levels.

13
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MREF. Furthermore, SMAP algorithms require less computatiam simulated annealing
or ICM.

Lafertéet al.[24] also exploited the causality between scales and dpedla method
calledhierarchical MAP(HMP) based on the Viterbi algorithm, to compute an exact MAP
estimate on a quadtree. Like SMAP, HMP is non-iterative aupliires two passes on the
guadtree. SMAP was extended by Lafestéal. to segmentation of multi-resolution im-
ages. Experiments demonstrated that these hierarchipedaghes require less compu-
tation and result in better estimation than non-hieraadmeethods. Wilson and Li [46]
extended the MSRF model in [6] by adding interactions betwarels at a given scale
which model regions that contains significant variation nmage properties. Both 4-
neighborhood and 8-neighborhood systems are used in thelmdalvever, only pairwise
interactions are included in their prior. As in [24], the ebstion model incorporates a
multi-resolution representation of the image of interdbiere is a series of observable
MRFs,Y® 0 < i < L, having a pyramid structure identical to Bouman and Shap[&}’
prior. In addition, by carefully combining the prior and obsgion models, the estima-
tion algorithms can be made independent of the number ofedags a result, the model
is able to segment images containing unknown number of megid sequential multi-
resolution MAPestimation process, utilizing a Gibbs sampler and simdlateealing, is

used to estimate random process parameters and segmeasimag

In yet another example of a hierarchical MRF, Katoal. [20, 21] further extended
the neighborhood system used in [46], so that it containghitee scales shown in Fig-
ure 2.4. Each site has interactions with its parent as weéi aeighbors at the same scale,
and its children. Due to the complexity of the neighborhogstem, iterative algorithms
are required to compute the MAP estimate. A multi-tempeeatinnealing scheme was
developed to segment images. The approach assigns higleraomes to coarser scales
so that the solutions computed will less likely correspamdbtal minima. At the finer

scales, the annealing is performed at lower temperatulésough this provides excellent

14
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segmentation results, it is computationally expensive.

2.3.3 MRF Parameter Estimation

Parameter estimation is important for Bayesian image aisdigxause model parameters
are required for MAP estimation. Maximum likelihood (ML)tesation is often used
for MRF parameter estimation [3]. When part of the data is hiddee Expectation-
Maximization (EM) algorithm [10] is commonly used for ML @siation. The EM al-
gorithm is an iterative procedure in which each iteratios hao steps: 1) the E-step
which computes the conditional expectation of the liketitl@f the hidden data given the
observed data and current estimates; and 2) the M-step wpdtes the parameter esti-
mates by maximizing the conditional expectation computetthé E-step. The procedure
stops when the parameter estimates stabilize. A major dtifficuapplying the EM algo-
rithm to MRFs is in the calculation of the conditional expéictain the E-step, which is
generally intractable because it requires summing overaasible configurations. There-
fore, approximation techniques such as the Mean Field Appration [7, 38, 48] and
pseudo-likelihood method [8, 50] are used in the E-step. S&EMochastic version of the
EM algorithm, has been proposed to reduce dependence onitiaeastimate by adding
a stochastic step after the E-step [28]. Alternatively, kdbarlo Markov Chain sampling
can be used to approximately compute the expectation [251135 The resulting Monte
Carlo EM (MCEM) includes SEM as a special case. EM and MCEM haea legtended

for parameter estimation on a quadtree [6, 24].

15
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Itk (LN [

Figure 2.2: Brodatz textures: a) aluminum wire mesh; b) str@\wmagnified French
canvas; d) loose burlap. The middle column and the rightroolare synthesized textures
using24-neighborhood and8-neighborhood respectively [32].
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Figure 2.3: Pixel sites (circles) and edge sites (square§eman and Geman’s image
restoration model [14]. Pixel sites have a 4-neighborhg@tiesn, and each edge site has
6 neighbors.

Ve e Sl ol S Sl S S 4
Ve Se S Sie Siie Sie Siie S Sy

Figure 2.4: The neighborhood system in Kato’s multiscale Mir¥elel [21].
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Chapter 3

Modeling Protein Spatial Distributions

In a specific signaling pathway, there are typically fromd@®0 proteins of interest. Let
us consider a simple, idealized case, where there are thogsns of interest which we
call {R, G, B}, and where only two proteins can be observed in any singl@ksankor
this scenario, we use a hidden procéssvith four states{ R, G, B, X} to characterize
the distribution of proteins on the cell membrane. The aoluit stateX corresponds to
background. D is called adistribution process In addition, there are three observable
processes)),, O, andO,, to model observations where only two kinds of proteins can
be observed at a time. These processes are calisdrvation processemd have four
observable statelg?’, G', B’, X'}. As in [36], we call these observable statdservation
symbolscorresponding to the presence or absence of a gold partialed to a protein vi-
sualized by TEM. The observation symbol probability dsition [36] is used to describe
the probability that hidden stagewill be observed as symbal

The approach adopted here is based on the quadruple siochaskl shown in Fig-
ure 3.1. This model assumes that the three observationggeselepend on the same dis-
tribution process. The behavior of the observation praxegs/en the distribution process

is defined by the observation symbol probability distribati There are three observation

18
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symbol probability distributions, one for each observajwocess. It is assumed that the
state in a given observation process depends only on thespannding state in the distribu-
tion process, and that threbservation matrice€),, Q, andQ,, can be used to represent
the conditional probability mass functionB((O,), = i|Ds = j), P((Oy)s = i|Ds = j)
andP((0,), = i|D, = j):

000 0
0100
Qr:
0010
100 1
(1 0 0 0]
0000
Qg:
0010
010 1
(1 0 0 0
0100
Q=
0000
00 1 1]

where(Qy);; is the probability that the hidden statevill be observed as the symboin
Oy. The problem is to infer the conditional p.m.f. 6f given the observation processes
O,, O, andOy,.

In the following sections, first-order Markov chains aredisar both the distribution
and observation processes to demonstrate that the quaditopghastic model is feasible.
The transition probabilities of hidden first-order Markdwains can be estimated in closed
form given the visible chains. It is then demonstrated thatttansition probabilities of
hidden second-order Markov chains can be estimated inc&ckoss under an assumption
of isotropy. Finally, we describe that the conditional @.of.a hidden MRF with a 4-

neighborhood system can be reliably estimated given thiel®iMRFs.

19
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D

Figure 3.1: Structure of a quadruple stochastic random tisttl in modeling of protein
spatial distributions. Red, green and blue open circleesgmtR, G, and B, and red,
green and blue closed circles represehtG’, andB’.

3.1 A First-order Markov Chain Model

This section demonstrates that the transition probadsliof a hidden first-order chain can

be accurately estimated given the visible chains.

The distribution proces® is a first-order Markov chaii' in which the Markov prop-

erty implies that

P(Ver1 = Jlve = Y1 = Gy—1, -+, 71 = 11, %0 = o)
= P11 = jle = 1) (3.1)
= Dji
wherei, j € {R,G, B, X}, andp;; is the probability of going from statéto state;.
Assuming that the Markov process is homogeneous, thetgtataf I' are defined by a

transition matrixP:

DPrr pTg DPrb Pra
Pgr Pgg DPgb Pgx
Por Pvg Pvb Pox

Pxr Pzg DPab Dax
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The first step is to generate a set of visible chains. To gémersible chains, we must
first generate a hidden chainof length V. Three visible chains,, v,, and~, are then
obtained by mapping the hidden states o the observable symbols using the observation
matrices. For example, we replaBeG, B, X with X', G', B, X’ respectively to generate
7. The visible chainsy,, v,, and~,, are realizations of the observation modgjs I';,
andI',. The hidden chainy is a realization ofi’. The transition probabilities i are
estimated using histogramming [16]. For example, the gribaof going from R to G

can be estimated as follows:

PG, R))  H{G, R)/N _ H({G, R))
P((R)) H((R))/N H((R))

pgr = P(GIR) = (3.2)

whereH ((R)) and H({G, R)) are the observed frequencies of the one-typleand the
two-tuple (G, R) in the hidden chain. In order to accurately estimate thesttiam prob-
abilities, the chain lengtiVv needs to be quite large. In addition, the histograms are cal-
culated from a sufficiently large starting poifitso that they will be representative of the

stationary distribution.

Unfortunately, the histograms for all states in the hiddeairc are not directly observ-
able. However, we can deduce them from the histograms of algnibthe visible chains.
Because of the one-to-one relationships betw@en v andG’ in ~, and betweerB in ~

andB’ in ~,, we observe that

H((G)) = H,((G)), H((B)) = H,((B")) (3.3)
H((G,G)) = H.((G',G")), H({(B,B)) = H,((B', B')) (3.4)
H((B,G)) = H.((B',&)), H((G, B)) = H,((C", B')) (3.5)
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whereH, are histograms of one-tuples and two-tuples of symbots.itt follows that

Pog % (3.6)
Doy N % 3.7)
Db ~ % (3.8)
Doy R % (3.9)

Using analogous methods,., p,s, pu, pr, Can be estimated from,, andp,.., prg, Pgr, Dgg
can be estimated from,. Therefore, estimates for all transition probabilitiegalving
at most two of the non-background states, namelyp,q, prb, Pgrs Dggr Pgbs Dors Pogs Dibs
can be estimated directly from the visible chains. Applyimg stochastic matrix property,
i.e, all column sums must equal one, three more entries in tmsitran matrix can be

estimated:

Pxr = 1 — Prr — Pgr — Dor

Pag =1 — Drg — Dgg — Dog

Db = 1 — Pryy — Pgb — Dbp-
Four additional transition probabilities remain to bemsiied:p, ., pye, Ppe, aNdp,,. Since
all Gs in~ are observed a&¥'s in,, it follows that

H,((R',X")) = H(R, X)) + H((R,G)) (3.10)

= H({(X)) pr + H((R',G")). (3.12)

We now observe that all histograms of one-tuples in the madhain are known:

(3.12)
(3.13)
(3.14)
(3.15)
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whereN is the chain length and is the starting point for histogramming. Therefore, the
only unknown variable in Equation 3.11 js,. Using methods analogous to those de-
scribed above fot,((R’, X')), eight linear equations are obtained usiig((B’, X)),
H,((X", X"), H,((G¢',X")), H.((B",X")), H,((X", X")), Hy((R',X")), H((B', X)),
and H,((X', X')), wherep,,, pg:, pr:» andp,, are the unknown variables. The result-
ing system of nine linear equations in four unknowns can Iheeddn closed form using

the pseudo-inverse method.

The relative error oP is computed in terms of the matrix 2-norff?> — P||5/|| P ..
The average error for seven experiments is approximately, i.e., P is accurate to 4

decimal digits. Actual data are shown in Appendix A.1.

3.2 A Second-order Markov Chain Model

Unfortunately, first-order Markov chains are too triviaboply to experimental data. Con-
sequently, we investigate whether the transition proliggslof a hidden higher-order
Markov chain can be accurately estimated given the visiblrns. This Section shows
that under an assumption of isotropy the transition prdiigsi of a hidden second-order
Markov chain can also be estimated in closed form. For a skoother Markov chain, the

Markov property means that

P(er1 = k|lve = J, Y1 = 4,%—2 = l4—2, -+ ,71 = 11,% = i)
= P(y41 = klve = j, -1 =) (3.16)
= DPkji
wherei, j, k € {R,G, B, X}, andp,;; is the probability that the process will enter state

k given that the current state jsand the previous state was There aret* = 64 such

transition probabilities. As beforé? is used to denote the mattiof these transition

1This term is used even thoughis three dimensionai,e., it is atensor

23

www.manaraa.com



Chapter 3. Modeling Protein Spatial Distributions

probabilities. GiverP, a second-order hidden chajrand three visible chains,, ~,, and

~, are generated using an approach similar to those desénis=ttion 3.1.

The histograms of one-tuples and two-tuples of states aan be computed as in
Section 3.1. However, we also need the histograms of thugled of states to calculate
the transition probabilities for the second-order Markbsia

H({n,m,1))

DPrmi = W (3.17)

wherel, m, n € {R,G, B, X}, andH({(n,m,!l)) is the value of the histogram for the
three-tuple(n, m, ) in . A strategy identical to that described in Section 3.1 igluse
infer the transition probabilities from the visible chaind/e first compute the transition
probabilities involving at most two of the non-backgroutatss: 1)p,.,, Poggs Pabgs Pobgs

Dagbs Pogbs Pgbb AN Dppy, TrOM .5 2) Drrry Dorrs Prbrs Dobrs Drrbs Dorby Drby AN Dy, from
and 3)pyrry Pgrrs Prgrs Pagrs Prrgs Pgrgs Prgg @NAp,g, from ,. Three additional transition

probabilities are estimated by exploiting the stochasttrix property

Parr = 11— Prrr — Pgrr — Porr
Pagg = 1 = Prgg — Pggg — Pbgg

Dabb = 1 — Prip — Pgbb — Pobb-

In addition, we can directly estimate six more entriePinnamelyp,,,.;, wheren, m,
I € {X, R}, or {X,G}, or{X, B}, and X appears once in the three-tugle m,[). For

example, because

H,((G' X',G")) = H(G,X,G)) + H{(G, R, G)) (3.18)

and

H((G,R,G)) = H,((G",R',G")) (3.19)
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it follows that

_H((G,X,G)
Pors = "H((X, @)
H,(G' X' G") — Hy((G',R',G"))

- RO . (3.20)

Using analogous methods,,., prer, Prras Dexb @Ndpey, can also be estimated. It follows
that there are 34 remaining unknown variables, namegly, p.gr, Dgors Dabrs Pgars Dbwrs
Pzxrs Porgs Pergs Progs Pxbgs Pragy Poxgy Pragy Pgrby Parbs Prgbs Pzgbs Praby Pgxby Pxabs Pgras Pora,

Pxras Prgxy Pogxs Pxgzs Prozs Pgbxy Pabay Prazs Pgzays Poxx andpwxx-

In a manner analogous to that described in Section 3.1, we thie observed frequen-
cies of three-tuples of symbols in the visible chains in teohthe transition probabilities

and histograms of two-tuples of states. For example,

H.((X',B,G"Y) = H{X,B,G)) + H(R, B,G))
= H((B,G)) - (Pabg + Prgb)

wherep,;, andp,,, are unknown variables. In an analogous manner, 12 additioear

equations can be derived from using

H,((B', X",¢"),  H.((X' X&), H(X.¢. B)), H{G X, B)),
H.((X',X',B"Y), H(B,G X"), H((X G X", H(G B,X")
H.((X',B,X"), H{G X, X", H(B,X,X"), H(X, X, X)).

An analogous approach can be used to derive 13 linear eqadtiom~, and 13 linear
equations fromy,. Unfortunately, the resulting system of 39 linear equation34 un-

knowns is under-determined. To provide additional comsisaon the matrix of transition
probabilities, an assumption of symmetry under reflectisat{opy) is introduced (Fig-
ure 3.2). As aresult, the number of unique transition praib@s in P is reduced from 64
to 40. Because the number of unknown variables is also redum®d34 to 19, the result-

ing linear system can now be solved in closed form using thénoaeof pseudo-inverse.
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We compute the relative error using the matrix 2-norm as cti&e 3.1. The average error

of five experiments is approximately—3. Actual data are shown in Appendix A.2.

yt-1 yt+1 yt

Figure 3.2: Concatenation of the future staté!, the current state’, and the previous
statey'~! into a two-neighbor neighborhood system. Symmetry undgrdpy means that
P = nlyt = m,471 = 1) equalsP (! = n|y! = 1,71 = m), i.e, for all I, m,
n € {R,G, B, X}, pum €qualsp,,.

3.3 A Markov Random Field Model

This section investigates whether the strategy used in thedider and second-order
Markov chain models works for Markov random field models. A kéar random field
can be specified by a conditional probability mass functidny, = z,|X; = z;,t € Nj).
Unfortunately, the conditional p.m.f. of a hidden MRF can hetestimated in closed
form using a strategy similar to the strategy described ini@e8.2. As a result, ML esti-
mation is utilized to estimate the conditional probalehti A method using mathematical
programming techniques is developed to solve the ML esktimairoblem and it is shown

that this approach results in good estimates for MRFs witmaighborhood system.

MRFs with a 4-neighborhood system (see Figure 2.1) are usdabtb the distribu-
tion and observation processes. For MRFs with a 4-neighloorlsgstem, the matrix of
conditional probabilitiesP, is five dimensional and there ate = 1024 elements inP.
Given P, we first generate a realization of the distribution procédssising the Gibbs
sampler [14]:

1: Initialize d randomly.
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2: Chooses € S randomly and replac®, with d, drawn fromP (D, = di|D; = d;,t €
No).
3: Repeat Step 2 many times.

After the realization is generated, samples of three \ediblds o,, o,, ando,, are obtained

by mapping the states ithto symbols of the observation process using the observation
matrices. For exposition purposes, we number the sitesid-theighborhood system as

in Figure 3.3a. A five-tuplém, i, k, j,i) and a four-tupl€(l, k, j, ) can then be used to
denote the joint eventsD, = m, D3 = [, Dy = k, Dy = j, Dy = i) and(D3 = |, Dy =
k, Dy = j, Dy = i) respectively. The conditional probability(D, = m|D3 = [, Dy =

k,Dy = j, Dy = i) is estimated as:

P(D4:m|D3:1,D2:k‘,D1 :j,DOZZ)

=Pmikji
_H((m, 1.k, j,i))
H(({l, k. j,4))

whereH are frequencies of the tuples in the sample®oin order to get good estimates

(3.21)

for the conditional probabilities, the sample size needetgbite large. The realization of
the distribution processl, is generated on a lattice of sige0 x 740. Corresponding to
eachd, there is a set of three visible samples. Our experimentwesthdhat 100 sets of

visible samples results in good estimates.

By performing a raster scan of the window shown in Figure 3& dke visible sam-
ples, we obtain the frequencies of four-tuples and fiveesipif observation symbols. We
can directly estimate 108 of the conditional probabilifiesn these observed frequencies
and by exploiting the stochastic matrix property. A systenlireear equations can be
built as in Section 3.2. Unfortunately, the resulting sgstef linear equations is under-
determined. To reduce the number of unknown variables, wBgxsotropy in the matrix
of conditional probabilities as shown in Figure 3.4. Thergpy assumption is reasonable

because the protein distributions are independent of tatien. The number of unknown
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variables is reduced to 181 under this assumption. Unfataly the system of linear
equations is still under-determined. Consequently, MLnestiion is adopted to infer the
conditional probabilities. Although the EM algorithm isstetandard method for ML esti-
mation when part of the data is hidden, it converges verylglddy exploiting a property
of the observation matrix.g., the probabilities in the observation matrix are either Q)or
we develop a non-iterative method using mathematical progring techniques to solve

the ML estimation problem.

Figure 3.3: Numbering of the sites in a 4-neighborhood sgste

Given a realizationl of the distribution process, the ML estimate maximizes the-c
ditional probability,P(d|P). The probability ofd givenP is approximated by the pseudo-
likelihood [26] which is simply a product of the conditiorfadobabilities:

P(d[P) ~ [ [P(di|di, t € N2). (3.22)
ses
However, the distribution process is not directly obselwalOnly visible samples are
available. Consequently, we need to compute the probabiligyvisible sample, given
P andQ,. We also approximate the conditional probabilityopfgiven P andQ;, by the

pseudo-likelihood:

Ok’P Qk HP Ok Ok; t,t S ./\/) (323)

seS
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i | k i
I Im|j k |m]|i i | i Im|k

k j i |

(a) (b) (c) (d)
i k j I

jim|1 I [m|j kimli ilmlk!| ). .,, .....

k i 1 j
(e) (f) (9) (h) )

Figure 3.4: Isotropy in a 4-neighborhood system. b), c) gratelrotations of a) by multi-
ples of90°. e)-h) are mirror images of a) with respect to four axes oéotife symmetry,
i) axes of reflective symmetry. All eight conditional prolidies, e.g, P(mli, [, k, j) and
P(mll, k,j,i), are equal under the isotropy assumption.

where (by Bayes’ rule):

P((Ok)8|(0k)tat € NS)

= > P((ox)slds)P(ds|ds,t € NP (dy, t € No|(0x)r,t € N,) (3.24)
di teEN
_ Z P((Ok)S’dS)P(dS|dt,t < M)P((Ok)t,t € ./\/:g|dt,t € ./\/’S)P(dt,t c Afs)
et P(lor)e 7 € ) |
(3.25)

Because it is assumed that a symbol at a site in an observatioegs depends only on

the corresponding state in the distribution process, lib¥es that

P((0k)s,t € Nildi, t € Ny) = H P((ox)eldr). (3.26)
LeEN

Finally, we observe that

P((ok)sl(0n)1,t € NG)
- P((0r)s|ds)P(dsldy, t € No)P(de, t € N) TTien, P((00)e]dr)

3.27
di N, P((o)i,t € N) (3.27)

29

www.manaraa.com



Chapter 3. Modeling Protein Spatial Distributions

and wherek € {r, g, b}.

In Eq. 3.27,P((0x)s|ds) is known and defined iQ;.. P((o):,t € N;) are the proba-
bilities of four-tuples of symbols in the visible fields, acah be estimated from samples of
the visible fields.P(d;, t € N;) are the probabilities of four-tuples of states in the hidden
field (determined byP). The unknown variables a@(d;|d;,t € N;) andP(d;,t € Nj).
The Maximum likelihood estimation d? is achieved by maximizing the logarithm of the
probability that the process generated the visible sangd@sfunction ofP(d,|d;, t € N)
andP(d;,t € N,):

P = arg max Z log P(0x|P, Qy). (3.28)

ke{r,g,b}

1.0

P(<R>) P(<G>)  P(<B>) P(<X>)

P(<RG>) PG,6>) P(B,G?) PG>

P(<R,B,G>) P(<G,B,G>) P(<B,B,G>) P(<X,B,G>)

P(<R,G,B,G>) P(<G,G,B,G>) P(<B,G,B,G>) P(<X,G,B,G>)

Figure 3.5: Quadtree of tuple probabilities. The probabof each vertex equals the sum
of the probabilities of its children.

Under the isotropy assumption, there are 181 unknown donditprobabilities. In ad-
dition, 37 of the joint probabilities of state four-tuplegalso unknown. The conditional

probabilities are constrained by
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wherei, j, k, I, m € {R,G, B, X'}. There are also constraints on the joint probabilities of
state four-tuples. To illustrate these constraints, webeald a quadtree of the four-tuple
probabilities (see Figure 3.5). As before, we can comp@@tbbabilities of all one-tuples
and two-tuples, and the probabilities of all tuples contajrat most two non-background
states. The constraint is
> P((k.ji) = Pla) (3.30)

(L,k,7,i)€C(a)
wherea is the nearest known ancestor of the four-tuple 0w is the set of leaves of
the quadtree which are on the branch which starts. atWe know that at least one of
the ancestors of the four-tuple is known because the prhfediof all two-tuples are
known. Therefore, there are 218 unknown variables with traimgs defined by Eq. 3.29

and Eg. 3.30. The objective function is

f =" logP(ox|P,Qs) (by Eq. 3.23)
k

=3 1og | [T P((on)sl(0r)er t € N2)

ses

=> " > Hil(ow)i,t €N,) log P((0x)s|(0r)e: t € N;) (3.31)

k (Ok)t,te./\[s
wherek € {r, g,b} andP((ox)s|(ox)s, t € N5) is defined in Eq. 3.27H((ox):, t € N;) is

the observed frequency of the four-tuple of symbols. Thélera we need to solve is

maximize: f

subject to:

(i) 0 < P(dg|ds, t € Ny) <1,
(i) 0 < P(di,t € Ny) <1,
(i) constraint defined by Eq. 3.29;

(iv) constraint defined by Eq. 3.30.

A software package, SNOPT [15], is used to solve the abovelgmo
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3.4 Results for the Markov Random Field Model

To test this method for ML estimation, a conditional distition is first specified for a
MRF with a 4-neighborhood system. 100 realizations of the MRfewgenerated on a
lattice of size600 x 740 by sampling from the conditional distribution using the k8b
sampler. For each realization, three visible samples wataeed by mapping the hidden
states in the realization to the observation symbols udiegobservation matrices. By
means of a raster scan (see Figure 3.3) over the visible santpke frequencies of four-
tuples and five-tuples of observation symbols were compuféel estimated 108 condi-
tional probabilities directly from these frequencies. Stirmate the remaining conditional
probabilities, Eq. 3.31 was used to create an objectivetiomavhich was maximized
subject to the constraints described in Section 3.3 usinQFSN This results in good esti-
mates which generate realizations which are visually vienylar to those generated using
the specified conditional distributions (see Figure 3.6 Telative errors of estimates are
shown in Table 3.1. We note that the estimates are not as gotiwbse for the first- and
second-order Markov chain models, especially for the cagersim Figure 3.6 b) and c).
One factor that may contribute to the error in the estimatdbe lack of sufficient data
for accurate estimation of conditional probabilities. Amer factor may be the fact that
the visible fields may be consistent with many different leiddlistributions, and the ML

estimation process can yield any of these distribution [11

1 2 3 4
IP-Plz(,102) | 2.98 | 14.3 | 37.4 | 6.20

[Ld P

Figure 3.6a)| 3.6b)| 3.6¢c)| 3.6d)

Table 3.1: Relative errors of estimates for the MRF modeling.
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(b)

(d)

Figure 3.6: Realizations from the MRF model with specifiedt(lahd estimated (right)
conditional distributions.
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A Multiscale Modeling Approach

Unfortunately, the 4-neighborhood system is too small foiewe satisfactory results in
many situations, especially when there are long rangeletioas between states. In addi-
tion, because 10nm particles are larger than 5nm partitlesnteractions between 10nm
particles are at distances longer than those between 5ritl@aim the experimental data.
Figure 4.1 illustrates the problem: The clustering of 10rartiples is optimally charac-
terized at the scale of 80 pixels, but clustering of 5nm plasiis optimally characterized
at the scale of 40 pixels. We also note that artifacts duegsthall neighborhood system,
i.e., particle positions aliasing with the lattice become wawith coarser grids. Although
we can use larger neighborhood systeealg, Tjelmeland and Besag [37], the number of
unknown variables dramatically increases. For exampkrethre 19400 unknown vari-
ables for a 8-neighborhood system, which is too large for BN@ handle. However, a
more powerful mathematical programming package was aldelt@ a system with such
a large number of unknown variables, our datasets are rg# kmough to reliably esti-
mate the conditional distributions, because only 10 to 28gies are captured in a typical

experiment using nanoprobes.
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4.1 A Multiscale MRF Model

To solve those problems, a multiscale MRF model has beenajes@! Like Bouman and
Shapiro [6], a pyramid with three layers is built (Figure&).2Each site is a parent of four
sites in the finer layer beneath it. Let us denote the thresrsalyom coarse-to-find, %,
LM, and L. For each layer, there is a corresponding distribution ggsd®) where

i € {2,1,0}. Each of these is modeled as a MRF with a 4-neighborhood sysftem
thermore, two additional distribution processes are ugsedddel the correlation between
the values of sites in one layer and those in the layer berieaffi>!) between.® and
LM, andD19 petweenL™ and L), Both of these are modeled as MRFs with a (4+1)-
neighborhood system, where four neighbors are in the sayee #nd the fifth neighbor
is their parent in the coarser layer above (Figure 4.2b). &hee also three correspond-
ing observation processes for each of the distributiongsses:0'”, 0", 0\”, O,
andO,(j’O) wherek € {r, g, b}. In the multiscale MRF model, the value of a site at a given
scale depends not only on its parent in the layer above bubal#s neighbors at the same
scale. In this respect, the model is closely related to tippssented in [20, 21, 29, 46].
However, unlike the models described by these authorstahistgcal inference problem is
solved by means of a sequence of related multi-resolutioblems rather than as a single
problem representing the entire quadtree. Multi-resotutepresentations of the observed
data at three scales are realization®6t, i € {2, 1,0}, and data between two scales are
realizations o)) andO(9), The conditional p.m.f’s oD can be inferred fron®'”

as described in Section 3.3. Furthermore, if the conditipma.f.s of D> can be esti-
mated fromO>", and D@9 from O\"”), then the Gibbs sampler can be used to generate

samples from the conditional p.m.f.’s in a coarse-to-finenea.

The multiscale MRF model has been tested on the data useduneMgl. The data
were processed at three different scales, with grid siz28,af0 and 80 pixels respectively.
The finest scale was chosen to be 20 pixels because that isogtefnequent distance of

the nearest neighbor for every particle in the data set (EigLB). When there are multiple
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proteins present at a single site, simple majority is usetetermine the state of the site.
Because there are only two proteins, the frequencies of thetéiples and five-tuples of
states are computed by means of a raster scan where thel¥boadigod is scaled to a size
of 80 x 80 pixels (see Figure 3.3). The conditional probabilities6? are then computed
using Eg. 3.21. In an analogous way, the conditional prditiaisiof D) and D(®) are
computed using the data at scalestofand20 pixels respectively. By means of a raster
scan over the data at scales of b&thand40 pixels, the frequencies of the five-tuples and
six-tuples of states (see Section 4.2) can also be compuitexiconditional probabilities
of D1 are then computed using Eqg. 4.1. In an analogous mannemtigitional proba-
bilities of D(:?) are computed using data at scaled®@and20 pixels. The Gibbs sampler
is then used to generate samples from the conditional gm.f’

1: Initialize D® randomly.

2: Sample from the conditional p.m.f. @#%.

3: Initialize D™ randomly.

4: While keepingD® unchanged, sample from the conditional p.m.f2otY.

5: Initialize D randomly.

6: While keepingD" unchanged, sample from the conditional p.m.f26f%),

Keeping the upper layer unchanged while sampling from the MRIgeling the corre-
lation between two layers allows long range properties tipagate from coarse scales
to fine scales. The multiscale MRF model is very good at charaatg both short and
long range interactions between states as shown in FigdreGompared to Figure 4.1
a), b) and c), particle distributions in Figure 4.4 c) areusity very similar to those in
the experimental sample images and the artifacts due toghetuthe relatively small
neighborhood system are minimal. There are 10 images inaupke dataset, which is

adequate to obtain good estimates of the conditional pifitiedas shown in Figure 4.4.
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4.2 Parameter Estimation: a (4+1)-Neighborhood System

In order to apply the multiscale MRF model to data where thezdlaee proteins, the pa-
rameters of the hidden MRF with a (4+1)-neighborhood systestriged to be estimated
from the visible fields. A strategy similar to that describedSection 3.3 is adopted to
solve the ML estimation problem. Figure 4.5 indicates haessare numbered in a (4+1)-
neighborhood system. Using this numbering scheme, a ple-tw, m, [, k, j,i) and a

five-tuple(m, [, k, 7,i) can be used to denote the joint events

(DS = n, DS = m, D =1, D) = k, D) = 4, Dy = i)
and

(D) = m, Dy =1, D" = k, D" = j, Dy = i)

respectively, whera denotes an upper layer anddenotes a lower layer. The conditional
probability P(D{"") = n|D"") = m, D{*") = 1, D) = k, D) = j D) = )

can then be estimated:
P(D") = n| D" = m, Dy =1, D" = k, D) = j, D) = i)

=Pnmlkji
H((n,m,l,k,j,i))
TTH(m, Lk, )
where H are histograms of the tuples. The probability of a realaratf the distribution

(4.1)

processd(“*), givenP is also approximated by a product of the conditional prolitées:

(AP~ J[ P, t € N,) (4.2)

seS(w)

where S is the set of sites in the lower layer. The probability of alimedion of the

u,w)

observation process( , givenP andQ,, is approximated as:

Py 1P, Qi) ~ [ P sl (0" )e,t € N:) (4.3)

seSw)
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where

P((0y"")s|(0("")e,t € NS)
P(dg“’w)]diu’w),t c A/‘S)P(dgu,w)’t EN H P uw ‘duw))

te{s}UN;

P((0\""),,t € Ny)

(4.4)

and where: € {r, g,b}. P((o{"")),|d*") are known and defined @y. P((0\""),,t €
N;) are the probabilities of symbol five-tuples in the visibled®hnd can be estimated
from the visible samplesP(dE“’w),t € N,) are the probabilities of state five-tuples in
the hidden field. In Eq. 4.42(d""|d"") t € N,) and P(d{"",t € N,) are unknown
variables. The maximum likelihood estimationBfis achieved by maximizing the log-
arithm of the probability that the process generated thdlisamples as a function of
P(d&™1d™) ¢ e N,) andP(d"™),t € N,):

D _ (uvw)
P = arg max > logP(o""|P, Q). (4.5)
ke{r,g,b}

Isotropy is only enforced within layers because there is eroesponding symmetry
between layers. The number of unknown conditional proliagslin P is 802. In addition,
there are 181 unknown probabilities of state five-tuplese ¥tal number of unknown
variables is 983. As in Section 3.3, a quadtree of state suplbuilt. The five-tuples are

leaves in the quadtree. The probabilities of the five-tuplesconstrained by

> P(m, Lk, ji) = Pla) (4.6)

(m,l,k,j,i)€C(a)

whereq is the nearest known ancestor of the five-tuples@fad is the set of leaves of the

guadtree which are on the branch which starts athe problem to be solved is

38

www.manharaa.com



Chapter 4. A Multiscale Modeling Approach

maximize:
F=> logP(of""|P, Q)
k

=3 > Hl(0f")t € ML) log P((0f")l(0f" )i t € N2)

k (oggt’w))t,te./\/’s

(4.7)

subject to:

() 0 < P |d") te N,) < 1;
(i) 0< P(d"™ teN,) <1

(i) vd te N, ST PAEd" te N) = 1,

d(“vw)

s

(iv) constraint defined by Eqg. 4.6.

The above problem is also solved using SNOPT.

Seven experiments were performed to exam the quality ahastin. A conditional
distribution for a MRF with a (4+1)-neighborhood system west §pecified. 100 realiza-
tions of the MRF were generated on a two layer resolution pitane. a coarse lattice
of size300 x 370 above a fine lattice of siz&)0 x 740, by sampling from the conditional
distribution using the Gibbs sampler. For each realizatioree visible samples were ob-
tained by mapping the hidden states in the realization toliservation symbols using the
observation matrices. By means of a raster scan with a win¢esesFigure 4.5) over the
visible samples, the frequencies of the five-tuples andugles of observation symbols
were computed. To estimate the conditional probabilitieeg, 4.7 was used to create an
objective function and maximization subject to the consteailescribed above was solved
by SNOPT.

Table 4.1 shows relative errors of estimates in terms ofisndatnorm for the seven

experiments. Like the MRF model with a 4-neighborhood systhere are errors in the
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estimates. When the number of samples are increased by a édid¢en, similar errors
were also observed. Itis very likely that the errors are dube fact that the visible fields
are consistent with many different hidden distributionss demonstrated in Section 4.3
and Section 4.4, although there were errors in estimatelseo€dnditional probabilities
of the MRF with a (4+1)-neighborhood system, the multiscalRAVmodel worked well

when applied to both synthesized and experimental data.

1 2 3 4 5 6 7

PSPl (x10%) | 44.1|33.7| 29.9| 35.6| 35.9| 45.3| 33.3

Table 4.1: Relative errors of estimates for MRFs with a (4+dighborhood system.

4.3 Results on Synthesized Data

The multiscale MRF model has been applied to synthesizedwdatee the grand truth is
known. The conditional probabilities &), D>, andD™" are first specified. A Gibbs
sampler is then used to generate samples from the conditisiabutions by means of
the coarse-to-fine process described in Section 4.1. Tke #uales used to generate the
samples are 80, 40 and 20 pixels. The coordinates of all gnegeins at the finest layer
in the samples are exported as data. The coordinatBsaoé eliminated to generate a set
of data whereR is missing. In an analogous way, a set of data wiieie missing and a
set of data wheré is missing are obtained. The data sets are processed antledisaee
scales used to generate them. The data sets at the scaleig€BOcpnsists of samples of
O,(f) and are used to estimate the conditional p.m.fD6. The data sets at the scales of
80 and 40 pixels are used to estimate the conditional p.mR®Y. The data sets at the
scales of 40 and 20 pixels are used to estimate the condipand. of D9, Finally, the
estimates of the conditional probabilities Bf>, D@V, and D% are used to generate

samples using Gibbs sampling in the same coarse-to-fine enal@scribed previously.
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This produces satisfactory results. As shown in Figurethéssamples of the finest layer

generated with specified and estimated conditional prdbeabiare visually very similar.

4.4 Results on Experimental Data

As a critical test, the multiscale MRF model has been appbedib sets of experimental
data obtained by immunogold labeling of membrane sheetes& were prepared from
rat basophilic leukemia 2H3 (RBL-2H3) mast cells, which esprthe high affinity IgE

receptor, FeRI. Crosslinking this receptor with multivalent ligand aetigs a complex,

multicomponent tyrosine kinase-dependent signalingwpayhleading to the release of
histamine and other mediators of allergic and asthmaticoresgs. Early events in the
FceRI signaling cascade include receptor redistribution iatgé clusters, the recruitment
of both membrane-bound and cytoplasmic signaling proteinsceptor-rich domains and
also the segregation of certain tyrosine phosphorylatafidding and signaling proteins

away from receptor-rich domains [42, 43, 44].

The first experiment involves three signaling species ibaabphilic leukemia cell line
2H3 mast cells: high-affinity IgE receptar subunit (3), linker for activation of T cells
(LAT), and phospholipasé€’y isoform 1 PLC~1). It is known thatPLC~1 colocalizes
with LAT and colocalizes loosely witl¥, but LAT occurs in small clusters separate from
( [44]. There are three sets of double-labeled data in thesfiygerimentPLC~1 labeled
with 5nm particles and LAT labeled with 10nm particles in thiet data set (Figure 4.7
a)), LAT labeled with 5nm particles angilabeled with 10 nm particles in the second set
(Figure 4.7 b)), andPL.C~1 labeled with 5nm particles anellabeled with 10nm particles
in the third set (Figure 4.7 c)). There are 10 images in eath set. We computed
histograms of the distances of the nearest neighbor foy eaaticle in the data sets and
found that the most frequent distance is 16 pixels. Conselyyaimndows of sizel6 x 16,

32 x 32, and64 x 64 pixels are used to estimate the histograms of symbols ahtee t
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scales. LATPLC~1, andg are assigned t&, G, and B respectively. In Figure 4.7 d), the
sample reconstructed from the modeling demonstrates hethdlocalization of PLE1
(green) with LAT (red) and the segregation of LAT/ PL.Cfrom 3 (blue) in a single

integrated image.

In the second experiment, we again chose th&kIFG subunit but added two different
signaling species, Grb2-binding protein 2 (Gab2) and tfesp®unit of phosphatidylinos-
itol 3-kinase (p85 of Pl 3-kinase). Gab2 is an adaptor pnaed Pl 3-kinase is an enzyme
that phosphorylates phosphatidylinositol lipids in thea3ipon on the inositol ring. Pre-
vious double-label studies indicated that Gab2 and p85atteriecruited to receptor-rich
domains in activated RBL-2HS3 cells [44]. This dataset was atspposed of three double-
label protocols, with 10 images each: 1) Gab2 was labeled Svitn particles and was
labeled with 10nm patrticles (Figure 4.8 a)); 2) Gab2 was kdelith 5nm particles and
p85 was labeled with 10nm particles (Figure 4.8 b)); and 3 p&s labeled with 5nm
particles ands was labeled with 10nm particles (Figure 4.8 c)). The datgpaneessed
at scales of 20, 40, and 80 pixels. In Figure 4.8 d), the samgaenstructed from the
modeling confirms the colocalization of p85 (red), Gab2 ég)eands (blue) in a single

integrated image.
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Figure 4.1: Non-hierarchical MRF modeling on experimengahdvith two proteins. The
first protein is a glycosylphosphatidylinositol-linkedopein, Thy-1 (labeled with 10nm
particles), and the second is a linker for activation of T;&lAT (labeled with 5nm par-
ticles). The MRF model has a 4-neighborhood system. Becaugdawa proteins are
involved, the frequencies of the four-tuples and five-tagéstates can be computed di-
rectly from the observed data. The conditional probabgitof the MRF are computed
using Eq. 3.21. A Gibbs sampler is used to generate samplestfre conditional distri-
bution of the MRF. The reconstruction depends on the gridsssel to process the data.
Grid sizes of 20, 40 and 80 pixels are used to process andstaonsamples in a), b) and
c). Areal TEM image is shown in d).
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A A
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(a) (b)

Figure 4.2: A multiscale MRF model and a (4+1)-neighborhoctesy.
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Figure 4.3: Nearest neighbor distance histogram for thgé&san Figure 4.4.
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Figure 4.4: Multiscale MRF modeling on experimental datehvitto proteins. The first
protein is a glycosylphosphatidylinositol-linked pratemhy-1 (labeled with 10nm parti-
cles), and the second is a linker for activation of T cellsTl{(labeled with 5nm patrticles).
a) A sample ofD® generated from the conditional p.m.f. 5%2); b) a sample oD
after sampling from the conditional p.m.f. 6f?Y; ¢) a sample ofD(® after sampling
from the conditional p.m.f. oD*?); and d) a real TEM image.
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Figure 4.5: Numbering of the sites in a (4+1)-neighborhogiesm.

46

www.manharaa.com




Chapter 4. A Multiscale Modeling Approach

=1 %5 - : "f:";'-:
3 5 g 2. . &
® x o e
' . t
RS . A o
e § -y : -
., A . .
o~ el e, L)
ik ) & 3 .
_;n_r Coe . . . i ;E:;'l',' o2s J o o
. ", - Ll *y
. L % (]
- . . . o
o ;: - te bt ot -
- ot & - : -
L o L 4 % ’
Wt
- - T
A ’ N F % B_-.ﬂ, . e s o N
a, Ve
: See
e f- : -
- ! s
k3
, - K N i
’; . "l
e i
D - L
P E T
A T ."3
s . S,
N g o T )
", i £ rd e, B
., . o2 2
il PPy ] j.: 5:.: .
b | L. & %
e P
a3t o s, L 34
g H, at
L T
& s cuk
1 5:; P o 's
S w T L R
o K % IR L cw 1 e
o et L e E
& o o B
F e P W iy
. =
= e Lig w
i L FRBRLE 4.
s . O § e
P . o o fetee
pic GO SN
& s L N X8
3 - e,
iy _; @ ane F .‘!._1 i, 8 'é
2 ot B gy M e 1: 3 r
L Saatis b oL L %
o g ’ : #
e . ﬁ . 1) k] A
X T E Eﬁ e
X A % i 7 L
i L ane a. ks & = Ed
1. i
& B : .
; o farg - ;
5 Ho. CEET it s
- - ' 3 ¥

Figure 4.6: Realizations of the finest layer of the multisédRF model generated with

specified (left) and estimated (right) conditional disitibns.
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Figure 4.7: Multiscale MRF modeling for the first experimemialving three proteins
where only two are observable in any single sample. a) TEM éwetlgerePLC~1 (5nm,
green) and LAT (10nm, red) are observed; b) TEM image wheré (3xm, red) and
£ (10nm, blue) are observed; c) TEM image whe&ieC~1 (5nm, green) and (10nm,
blue) are observed; and d) a reconstruction computed usbizgsGampling that shows the
distributions of all three proteins.
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Figure 4.8: Multiscale MRF modeling for the second experitmevolving three proteins
where only two are observable in any single sample. a) TEMyenahere Gab2 (5nm,
green) ands (10nm, blue) are observed; b) TEM image where Gab2 (5nm, yeewhp85
(10nm, red) are observed; c) TEM image where p85 (5nm, redl)5afiOnm, blue) are
observed; and d) a reconstruction computed using Gibbslsantpat shows the distribu-
tions of all three proteins.
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Chapter 5

Gibbs Random Field Models

In all of the experiments that have been performed so far, MREsa 4-neighborhood
system have been used. A larger neighborhood system willowepthe quality of the
reconstruction computed using Gibbs sampling. Howevehesize of the neighborhood
system increases, the number of unknown variables becaudarge to be solved using
SNOPT. In this chapter, the Markov-Gibbs equivalence idatqu to utilize a larger
neighborhood system in the modeling. The Gibbs formulatiihbe used to compute
the conditional probability for a MRF. By using the Gibbs fodation, the number of
unknown variables can be reduced. Consequently, a 8-neaigbbod system can be used
in the modeling to improve the quality of reconstructionppposed to the 4-neighborhood

system that has been used in the previous experiments.

5.1 Gibbs Random Field

As mentioned in Section 2.1, Gibbs random fields and Markodoan fields are formally
equivalent by the Hammersley-Clifford theorem. A GRF is defimeterms of functions

termedclique potentials A cliqgue C' associated with a lattic& with a neighborhood
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system\ is a subset of sites i which satisfies either of the following conditions:

e (' consists of a single site

e Every pair of distinct sites in’ are neighbors,e,, if s, € C' ands # r thens € N,
andr € N,.

A random field X is said to be a GRF ol with respect ta\ if and only if its joint

distribution is of the following form

P(X =) = %exp(—U(x)) (5.1)
where
Z =Y exp(~Ul(x)) (5.2)
is a normalizing constant called thpartition functionand U (x) is the energy function
The energy
Ux)=> V() (5.3)
C

is a sum of clique potentialg-(x) over all possible cliques. The clique potential depends
only on the values of the random variables associated wiis 81 the clique. Figure 5.1

a) and b) shows the cliques for the 4-neighborhood and &beidpood systems.

O H b
L ||

1 [T

(@) (b)

OCH

Figure 5.1: Cliques for the a) 4-neighborhood and b) 8-neagidiod systems [26].
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A GRF ishomogeneous V- (x) doesn’t depend on the relative position of the clique
C'in S. ltis said to besotropicif V¢ is independent of the orientation 6f. A homo-
geneous and isotropic GRF is much simpler to specify than atieut such properties.
Homogeneity is assumed in most MRF image modeling for the shkethematical and
computational convenience. Isotropy is assumed in thelgmokreated here because the
spatial distributions of proteins on cell membranes arepethdent of orientation.

P(X = z) is the probability of a particular configuration, When the energy of the
configuration,U (z), is lower, it is more likely. By exploiting the Markov-Gibbs @iga-

lence, we can write the conditional probability in terms lidwe potentials:

exp[— Y cec, Ve(sim, t # 5.t € O]

P(X, = sXat s) —
( el Xo,t € N) > ev OXP— Scec, Volysian t £ 5,t € C))

(5.4)

where( is the set of cliques of which containss, V is the set of values that a random
variable can take. As shown in Figure 5.1b, a 8-neighbortsystem has 1-cliques, 2-
cliques, 3-cliques and 4-cliques. Using the Gibbs fornoigtwe only need to estimate
4-dimensional joint probability mass functions rathemt®adimensional joint probability

mass functions. By exploiting isotropy, the number of unknoxariables can be further

reduced, so that our MRF model can be based on a 8-neighboslyetam.

5.2 A GRF Model: 4-Neighborhood Systems

In this section, a GRF model with a 4-neighborhood systenriaditated. The GRF model
is defined in term of clique potentials. The mathematicagpaoaming techniques used in
Chapter 3 and 4 are utilized to infer the clique potentialstufiden random field for three

proteins from visible random fields where only two proteires aloservable.
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5.2.1 Cligue Potentials for a 4-Neighborhood System

GRFs with a 4-neighborhood system are used to model both ¢ebdtion and obser-

vation processes. As shown in Figure 5.1a, a 4-neighborbgsigm has only 1-cliques
and 2-cliques. Because there are four possible states, thieamof state and clique type
combinations is 36. In other words, 36 clique potentialsrageiired to define a GRF with
a 4-neighborhood system. Under the assumption of isottbpypumber of unique clique
potentials can be reduced to 14 as shown in Table 5.1. Compatted18 unknowns for a

MRF model with a 4-neighborhood system, the number of unkrnuavameters is reduced

dramatically.

Cr | C¢ | Cp | Cx | Crr | Cre | CrB | Crx | Car | Caa

(%1 (%) U3 V4 Vs Vg U7 Vg Vg Vg

Cep | Cax | Cr | Cpe | Cep | Cpx | Cxr | Cx¢ | CxB | Cxx
V10 V11 U7 V10 V12 U13 Ug V11 V13 V14

Table 5.1: Fourteen clique potentials for a GRF with a 4-neighood system.

Like the clique potentials of Gibbs random fields used in imsggmentation and tex-
ture models [11, 14], the potentials of 1-cliques contrelplercentage sites in given states
in the Gibbs random field, that is the marginal distributidrih@ random variable, while

the potentials of 2-cliques, 3-cliques, and 4-cliques rnihe higher-order statistics.

5.2.2 Parameter Estimation

The distribution process is represented by a GRF with a 4hbeidnood system that is
defined by the cliqgue potentials presented in Table 5.1. Weweén order to generate a
realization of the distribution process using the Gibbsgamthe conditional probabili-

ties of the corresponding MRF are needed. The conditiondighitities are computed as
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follows:

exp[=V(ds) = 2 ien, Valds, di)]
ste{RG B,X} exp[—V(d;) — Zte./\fs Va(ds, dy)]

whereV (d) andV5(ds, d;) are potentials of the 1-cliques and 2-cliques. Using the con

P(Dy =d,|D,,t € N,) = (5.5)

ditional probabilities, we can generate samples of theildigton process and observation
processes, compute the frequencies of four- and five-tugtes estimate the conditional

probabilities from the samples as described in Section 3.3.

A ML estimation process analogous to that described in 8e@&i3 is used to infer
the clique potentials of the distribution process. bgtbe a realization of the observa-
tion process),, and letV denote a vector of clique potentials, and @t denote the
observation matrices. The conditional probabilRyo,|V, Qy) is approximated by the
pseudo-likelihood:

P(ox|V, Q) ~ HP ((or)s|(or)e, t € N). (5.6)
ses
The problem which must be addressed next is how to computey)|(ox):, t € N)
in terms of clique potentials. In Section 3.B((ox)s|(ox):,t € Ns) is computed using

Eq. 3.27. We can rewrite this equation as

P((or)sl(or)e, T € N5)

_ Z P((or)s|ds)P(ds, dy, t € N) I_Ltej\fS P((ox)¢|dy) (5.7)
de teN P((Ok)t’t < '/\[S)
where

We note thaP (d,, d;, t € N,) are the joint probabilities for a Gibbs random field based on
a 4-neighborhood system. As a result, we can use EQq.5.1 tputerthe joint distribution

for this special Gibbs random field:

L exp(—U(dy, it € N) (5.9)

P(ds,d;, t € Ns) = 7
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where Z is the partition function and/(d,, d;,t € Nj) is the energy function of the
configuration{d,, d;,t € N,}. Because the lattice of the Gibbs random field is a 4-
neighborhood system, and because there are only cliquégeotfig to two,U (ds, d;, t €

N) can be calculated as follows:

U(dy,di,t € N,) = Vi(dy) + ) Va(ds, dy) (5.10)
teNs

whereV; (d,) andV,(ds, d;) are potentials of the 1-cliques and 2-cliques. Therefoee, w

can compute’((ox)s|(ox):, t € Ns) using the following equation:

P((ox)s| (o), t € N)

.S P((or)s|ds)exp(—=Vi(ds) — > e n, Valds, di)) TLiep, P((0k)e|de)
n Z x P((op)s,t € N5) '

dt,tENs

(5.11)

The one problem which remains is how to compute the partifimetion Z. A main

difficulty in using GRF models is in the calculation of the p#rh functions because
this requires summing over all possible configurations otlcam fields. Fortunately, the
lattice of the Gibbs random field is small and it is possibleum over all configurations

to compute the partition function:

7 = Z exp(—U(ds, ds, t € Nj))

{ds adt atENS}

= Z exp(— Z Vo(ds, dy)) (5.12)

{ds,d¢,teENS} teNs

Equation 5.11 can be rewritten as:

P((ox)s| (o), t € N)

_ P((08)slds)exp(=Vi(ds) = Y, n, Valds, di) Tien, P((0k)il)
de tEN D tdodriensy EP(=Vi(ds) = 320 cp, Valds, di)) < P((0x)e t € N)

(5.13)
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In Eq. 5.13,P((01)s|ds) andP((oy),|d;) are known and are defined @. P((ox);,t €
N;) are the probabilities of four-tuples of symbols in the okagon processes, and can
be estimated from samples of the observation processese@aegly, the unknown vari-
ables ard/;(d,) andV;(d;, d;). The maximum likelihood estimation &f is achieved by
maximizing the logarithm of the probability that the proggenerated the visible samples
as a function o¥/ (d,) andVs(ds, d;):

V = arg max Z log P(0x|V, Qu). (5.14)
ke{r,g,b}

There are also constraints on the clique potentials. firsttlique potentials control the
marginal distribution of the random field, and these 1-&igutentials can be defined as

the logarithm of the corresponding marginal probabilities
Vi(ds) = —In(P(dy)). (5.15)
Therefore, these 1-clique potentials are constrained by

> exp(-Wi(dy)) = 1. (5.16)

dse{R,G,B,X}

Secondly, as described in Section 3.3, we can directly estitihe conditional probabil-
ities that involve at most two non-background states froendlimples of the observation
processes. These known conditional probabilities impossteaints on the clique poten-

tials:

P(dy|di, t € N,) = exp[—Vi(ds) = Yyen, Va(ds, di)]

= (5.17)
ste{R,G,B,X} exp[—Vl(dS) - ZteNs VQ(dsv dt)]

whereP(d;|d;,t € N;) are the conditional probabilities that involve at most twann

background states. Therefore, the fourteen unknown cliquentials are constrained by
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Eq. 5.17. The objective function is

f= logP(o|V,Qs) (5.18)
k
= log [ P((ox)l(or)i, t € M) (5.19)
k seS
=> > Hil(ow)i,t € N,) log P((0x)s|(0r)e, t € Ny) (5.20)
k (og)t,teNs

wherek € {r, g,b} andP((ox)s|(ox):, t € N;) is defined in Eq. 5.13H;.((ox):, t € Ni) is

the observed frequency of the four-tuple of symbols. Thélera we need to solve is

maximize: f

subject to:

(i) the constraint defined by Eq. 5.16;

(ii) the constraints defined by Eg. 5.17.

SNOPT is used to solve the above problem also.

5.2.3 Results for the GRF Model: 4-Neighborhood Systems

To test the ML estimation for the GRF with a 4-neighborhoodeays a distribution of
clique potentials is first specified. The conditional praliés of the corresponding MRF
are then computed using Eq. 5.5. One hundred realizatiottsedGRF were generated
on a lattice of sizes00 x 740 by sampling from the conditional distribution using the
Gibbs sampler. For each realization, three visible samp&s obtained by mapping the
hidden states in the realization to the observation symimigy the observation matrices.
By means of a raster scan (see Figure 3.3) over the visiblelsantpe frequencies of
the four-tuples and five-tuples of observation symbols veemraputed. 108 conditional

probabilities are estimated from these frequencies, aesktlhvere used to compute the
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clique potentials: Eq. 5.20 was used to create an objectimetion and maximization
subject to the constraints defined by Eq. 5.16 and Eq. 5.17salasd by SNOPT. This
results in good estimates which generate realizationstwdiie visually very similar to
those generated using the specified clique potentials (ffeeers.2). The relative errors

of estimates are shown in Table 5.2.

1 2 3 4

Y VI (x10%) | 32 | 185 | 200 | 5.7

Figure 5.2a)| 5.2b)| 5.2¢)| 5.2d)

Table 5.2: Relative errors of estimates for the GRF modelingfioeighborhood systems.

5.3 A GRF Model: 8-Neighborhood Systems

This section investigates whether the strategy describ8dction 5.2 also works for Gibbs

random field models with a 8-neighborhood system.

As shown in Figure 5.1b, a 8-neighborhood system has cligisgge up to four. Since
there are four possible states, the number of state andjdedtype combination is 4. The
numbers of state and clique type combination are 64, 256 aéda2 2-cliques, 3-cliques
and 4-cliques respectively. Therefore, 580 clique potéhtare needed to define a GRF
with a 8-neighborhood system. This number is already reddcaschatically, compared
with 19400 unknown variables for a MRF with a 8-neighborhogstesm. By assuming
isotropy, the number of unique clique potentials can bén&rrteduced. For examples, the
vertical, horizontal and diagonal 2-cliques are all equdar the assumption of isotropy.
The number of unique clique potentials required to define a @Rfra 8-neighborhood

system can be reduced to 69 under the isotropic assumption.

The conditional probabilities of the corresponding MRF véitB-neighborhood system
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can be computed in terms of clique potentials as follows:
exp(—U(ds))

P(D, = d,|D, = dy,t € N,) = (5.21)
' ! >dee €{R,G,B,X} exp(—U(ds))
where
U(d = —‘/1 Z ‘/2 dg,dt Z ‘/3(d87dt?du)
teNs t,ueNs
Z ‘/4(d57dt7du>dv> (522)
t,u,vENs

and wheréV;(dy), Va(ds, dy), Vs(ds, dy, dy,), andVy(ds, d;, d,,, d,)) are potentials of the 1-
cliques, 2-cliques, 3-cliques and 4-cliques respectivelsing the conditional probabili-
ties, we can generate samples of the distribution proces®laservation processes, and
can compute the frequencies of eight- and nine-tuples ofrgbble symbols, and can

estimate the conditional probabilities from these samatelsefore.

The mathematical programming technique used to estimateliue potentials of
a GRF with a 8-neighborhood system is analogous to that useithéoGRF with a 4-
neighborhood system. To approximate the conditional itiba P(ox|V, Qi) using
pseudo likelihood, the joint probabilities of a Gibbs ramdbeld with a 8-neighborhood
system are calculated using Eq. 5.9. The energy functidreis tomputed using Eq. 5.22.

The partition function is computed using the following etjora

Z = exp[=Vi(ds) = Y Va(de,dy) = D Valds,dy, )

teN; tueN;
Z ‘/zl(dsadtaduydvﬂ
t,u,vENs

In addition, there is a constraint on 1-clique potentials

>, ep(-hld) =1 (5.23)
dse{R,G,B,X}
Finally the constraints imposed by the conditional proliéds that involve at most two
non-background states are defined by Eq. 5.21. The matteahptogramming problem

is solved by SNOPT.
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Four experiments have been performed to test the ML esbm&br GRFs with a 8-
neighborhood system. Figure 5.3 shows the results for thresigperiments. The estimates
are good and result in realizations which are visually véoge to those generated using

the specified clique potentials. The relative errors ohestes are shown in Table 5.3.

1 2 3 4

Nz (x10%) | 295 | 34.2 | 22.8 | 10.1

Figure 5.3a)| 5.3b)| 5.3¢c)|5.3d)

Table 5.3: Relative errors of estimates for the GRF modelirth wi8-neighborhood sys-
tem.

5.4 A Multiscale GRF Model

In this section, a multiscale GRF model is built. Each layehis model is modeled as a

GRF with a 8-neighborhood system.

As was true of the multiscale MRF model described in Secti@énthere is a pyramid
with three layers in the GRF model. Each site in a coarse layapiarent of four sites in
the fine layer beneath it. The layers from coarse to fine aretddras.®, L(Y), andL(©).
For each layer, there is a corresponding distribution mede) wherei € {2,1,0}. Each
of these is modeled as a GRF with a 8-neighborhood systermhdfuarbre, two additional
distribution processes are used to model the correlatiomdas the values of sites in one
layer and those in the layer beneathi>" betweenL® and L), and D) between
LM and LY. Both of these are modeled as GRFs with a (8+1)-neighborhostersy
where eight neighbors are in the lower layer and the nintghier is their parent in the
layer above (Figure 5.4a). There are also three correspgratiservation processes for
each of the distribution processes!”, 0", 0\”, 0> and0"” wherek € {r,g,b}.

The value of a site at a given scale depends not only on itsparehe layer above but
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also on its neighbors at the same scale. Multi-resolutioresgmtations of the observed
data at three scales are realizations)éf, i € {2,1,0}, and data between two scales
are realizations of)>!) andO). We can infer the clique potentials &f® from 0"
using the process described in Section 5.3. Furthermoree i€an estimate the clique
potentials ofDY from 0> and D™ from O\"?, the Gibbs sampler can be then used

to generate sample random fields in a coarse-to-fine manner.

5.4.1 Parameter Estimation: a (8+1)-Neighborhood System

In order to apply the multiscale GRF model to experimentahdtte clique potentials
of the hidden GRF with a (8+1)-neighborhood system first nedzktestimated from the
visible fields. The cliques of a (8+1)-neighborhood systéso Aave to be defined. As in
the MRF multiscale model, isotropy is only enforced withigdes. Figure 5.5 shows the
cliques for a (8+1)-neighborhood system. The first row shcwgsies with sites from only
one layer, which are the same as the cliques of the 8-neighbdrsystem. The second
row shows a clique with sites from two layers. There is onlg @rclique with sites from
two layers because only site 9 in the lower layer is a neiglbsite 0 in the upper layer.
Under the assumption of isotropy, there are 69 unique clppientials for cliques in the
first row of Figure 5.5. For the 2-clique in the second row ajufe 5.5, there are 16
unique clique potentials. As a result, the total number afjue clique potentials needed
to define a GRF with a (8+1)-neighborhood system is 85. Usiegdltlique potentials,
the conditional probabilities of the corresponding MRF vet{8+1)-neighborhood system

can be calculated as before.

A similar strategy to that described in Section 5.2.2 is aeldpo solve the ML esti-
mation problem. The sites are numbered in a (8+1)-neigldoattsystem in the manner

shown in Figure 5.4 b). Using this numbering scheme, a tpletu, ¢, p, 0,n,m, . k, j, )
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can be used to denote the joint event that
Dg()u,w)’ Déu,w)’ l)gu,w)7 Déuﬂu)7 Déu,w), l)z(lu,w)7 Déu,w)’ Déu,w), l)gu,w)7 D(()u,w)

take the values of, ¢, p,0,m, [, k, j,i respectively, and a nine-tuple, p,o,m, 1, k, j, )

can be used to denote the joint event that
Déu,w)’ Dgu,w)’ l)((i;u,w)7 Déu,w)’ D‘(Lu,w), l):(),u,w)7 Déu,w)’ D§u,w)’ D(()u,w)

take the values of, p, 0o, m, [, k, 7, i respectively, where denotes an upper layer and
denotes a lower layer. For the sake of notation, the primebsyia used to denot@., w).
The conditional probability can then be estimated as fadtow
P(DQI‘DSI?D’TIﬂ D6/7D5/7D4,,D317D2,>D1/a DO/)
_H((n,m,l,k, j,i))

H((m,l,k,j,1))
where H are histograms of the tuples. The probability of a realorabf the observation

(5.24)

processy,, givenV andQy, is approximated as:

Po/IV.Qi) = [] P(0))l(0)i,t € NY) (5.25)
s€S(w)
where
P((o)sl(op)e, t € NY)
exp(~U(d/,d/ .t € N,)) T P((of)ld))

te{sIUN;
- (5.26)
ds/ﬂ;,te/\/s Z X P((Oki)t’t 6 /\/s)

and whereS™) is the set of sites in the lower layer, akd<c {r,g,b}. In Eq. 5.26,
U(d!,d/,t € Ns) is the energy function of the configuratidqa/,d/,t € N} andZ
is the partition function for a Gibbs random field with is a {§-heighborhood system.
U(d/,d/,t € Ny) can be computed as follows:

U(d!, d/ t e N,) d)+ > Va(dl,d))+ > Va(d/,d/.d,)
teNs t,ueN;
t,u,vENs
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where Vi (d/), Va(d!,d/), Vs(d.,d/,d}), andVy(d/,d/,d., d}) are potentials of the 1-,
2-, 3- and 4-cliques. And the partition function of the Gilvaadom field with a (8+1)-

neighborhood system can be calculated as follows:

Z = ZeXp[_‘/l(ds,)_ Z ‘/Q(dslvdt/) - Z ‘/3<ds/7dt/7dz:)

teN, t,ueN,
- Z ‘Q(d;,dt/,dé,dvlﬂ (528)
t,u,vENs

In Eq. 5.26, Eq. 5.27, and Eq. 5.28, the unknown variablesherelique potentials. The
maximum likelihood estimation d¥ is achieved by maximizing the logarithm of the prob-

ability that the process generated the visible samplesascidn of the clique potentials:

7 /
V = argmax > logP(o/[V,Qp). (5.29)
ke{r,g,b}

A constraint on 1-clique potentials also needs to be enébrce

> exp(-Wi(d)) =1 (5.30)

d/€{R,G,B,X}

In addition, as described in Section 3.3, it is possible teally estimate the conditional
probabilities that involve at most two non-backgroundestditom the samples of the obser-
vation processes. These known conditional probabilitgsose the following constraint

on the clique potentials:

— / /
P/t € N.) = exp[—U(d/., d/,t € N,)]

= (5.31)
>odeefrc.px) XP=U(d), d/ t € Nj)]

whereP(d/|d/,t € N;) are the conditional probabilities involving at most two ron
background states, arid(d/,d/,t € N;) are defined by Eq. 5.27. Therefore, the 85

unknown clique potentials are constrained by the congtalefined by Eq. 5.31. The
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objective function is

f =" logP(o}[V,Qu) (5.32)
k
=Y log | [ P(o)sl(0)e,t € N (5.33)
k seSw)
=" > Hil(ot € M) log P((0))s](0)i, t € N,) (5.34)
kE (o))t,teNs

wherek € {r, g,b} andP((0))s|(0):,t € N;) is defined in Eq. 5.26H}.((0});,t € N;) is

the observed frequency of the nine-tuple of symbols. Thelpro we need to solve is

maximize: f

subject to:

(i) the constraint defined by Eqg. 5.30;

(i) the constraints defined by Eq. 5.31.

SNOPT is used to solve this problem also.

Five experiments have been performed to examine the qualigtimation. Clique
potentials for a GRF with a (8+1)-neighborhood system wese $pecified, and the con-
ditional probabilities for the corresponding MRF were coneol 100 realizations of the
GRF were generated on a two layer resolution pyramid congisif a lattice of size
300 x 370 above a lattice of sizé00 x 740 by sampling from the conditional distribu-
tion using the Gibbs sampler. For each realization, threkla samples were obtained by
mapping the hidden states in the realization to the observaymbols using the observa-
tion matrices. By means of a raster scan (see Figure 5.4 b)loserisible samples, the
frequencies of the nine-tuples and ten-tuples of obsenwvatymbols were computed. To
estimate the clique potentials, Eqg. 5.34 was used to creaibjactive function which was

maximized subject to the constraints described above (&NQPT. Table 5.4 shows the
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Chapter 5. Gibbs Random Field Models

relative errors of the estimates in terms of matrix 2-normtife five experiments. Like

the GRF model with a 8-neighborhood system, there are emdheiestimates. It is also
likely that the errors are due to the fact that the visibledfedre consistent with many dif-
ferent hidden distributions. As demonstrated in Sectidn2; although there were errors
in the estimates of the clique potentials of the GRF with a §8¥lighborhood system, the

multiscale GRF model worked well when applied to synthesastiexperimental data.

1 2 3 4 5

NV VI (x10%) | 15.8| 37.1| 58.5 44.4] 74.2

Table 5.4: Relative errors of estimates for GRFs with a (8-€igimborhood system.

5.4.2 Results on Synthesized Data

The multiscale GRF model is first applied to synthesized dédtara/the ground truth is
known. The clique potentials d®®, D@D and D" are specified. Using these clique
potentials, the conditional probabilities of the corresfiog MRFs are computed. A
Gibbs sampler is then used to generate samples from thetiomadidistributions through
a coarse-to-fine pass in the manner described in Sectioifelthree scales used to gen-
erate the samples are 80, 40 and 20 pixels. The coordinagditlokee proteins at the finest
layer in the samples are exported as data. The coordinafeésud eliminated to generate
a set of data wherg is missing. In an analogous way, a set of data wiier®missing and

a set of data wherB is missing are obtained. The data sets are processed ahtbdlzze
scales used to generate them. The data sets at scale of 8)geegarded as samples
of O,(f) and are used to estimate the clique potential®8f. The data sets at scales of 80
and 40 pixels are used to estimate the clique potential3®f . The data sets at scales of
40 and 20 pixels are used to estimate the clique potentid¥'d?. Finally, the estimates

of the clique potentials ob®, D&Y and D% are used to generate samples by means
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of Gibbs sampling in a coarse-to-fine manner as before. Thdyzes satisfactory results.
As shown in Figure 5.6, the samples of the finest layer gee@rmom GRFs with the

specified and estimated clique potentials are visually senylar.

5.4.3 Results on Experimental Data

The multiscale GRF model has also been applied to the same ta@fsexperimental
data that were used to test the multiscale MRF model. The kpsrenent involves three
signaling species in rat basophilic leukemia cell line 2H&sincells: high-affinity IgE
receptor subunit (3), linker for activation of T cells (LAT), and phospholipa&gy iso-
form 1 (PLC~1). In the second experiment, we are still interested in th&kFG subunit
but two different signaling species, Grb2-binding prot2ifGab2) and the p85 subunit
of phosphatidylinositol 3-kinase (p85 of Pl 3-kinase) alleed. The data are processed
in an analogous way as in Section 4.4, except that the maléi<6RF model is used to
reconstruct samples from the data. Figure 5.7 a) shows alsasgonstructed from the
first experiment data. It also demonstrates both the coiatadn of PLCy1 (green) with
LAT (red) and the segregation of LAT/ PQ@ from 3 (blue) in a single integrated image.
Figure 5.7 c) shows a sample reconstructed from the modefirthe second experiment
data. It also confirms the colocalization of p85 (red), Gajy2€n), and’ (blue) in a single
integrated image. Compared with samples reconstructed by idétteling (Figure 5.7 b)
and d)), the cluster sizes in samples generated by GRF mgdidita are larger and the

samples from the GRF modeling are marginally better tharetbbthe MRF modeling.

5.4.4 Comparison of MRF and GRF Modeling Quality

Kullback-Leibler (KL) divergence is a non-symmetric measaf the difference between
two probability distributions. In this section, the qualdf MRF and GRF modeling is

measured in terms of KL divergence computed using sampbes fhe modeling. Syn-
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thesized data of MRF modeling with a 4-neighborhood systeth@RF modeling with

a 8-neighborhood system are used in the computation. lisisadee to use experimental
data. However, it is difficult to use them because, firstlg ginound truth is not known,
and secondly, the available experimental data are toospaeccurately estimate the KL

divergence of the probability distributions.

Let P(z) represent a true distribution of data. In the case of modelmsynthesized
data, this is the distribution defined by the specified patarae LetQ(x) denote an
approximation ofP(x). It is the distribution defined by the estimated parametershe
synthesized data. The KL divergence(@from P is defined to be
P(x)

Qx)

Dir(P||D) = P(x)log (5.35)

200 samples are first generated using the specified paravaetd’(x) are estimated
using these samples. Parameters estimated from MRF/GRF impdeé then used to
generated 200 samples. T@Qéx) are calculated using these samples. The KL divergence
of @ from P is computed using Eq. 5.35. The KL divergences for three afesamples
from MRF and GRF modeling are shown in Table 5.5. It is cleartiaiarger neighbor-
hood systems in the GRF modeling result in better recongbruguality in terms of KL

divergence.

1 2 3
MRF modeling| 0.5012| 0.4890| 0.2284
GRF modeling| 0.0653| 0.0572| 0.0273

Table 5.5: KL divergences for samples of MRF and GRF modeling.
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Figure 5.2: Realizations from the GRF model with specified)l@fd estimated (right)
clique potentials. The GRF model has a 4-neighborhood system
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Figure 5.3: Realizations from the GRF model with specified)l@fd estimated (right)
clique potentials. The GRF model has a 8-neighborhood system
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(a) (b)

Figure 5.4: A multiscale GRF model: a) A (8+1)-neighborhoostesn and b) numbering
of sites in the neighborhood system.

VT s

&
s

Figure 5.5: Cliques for a (8+1)-neighborhood system. Thedbgues with sites from one
layer are in the first row and the single clique with sites friovo layers is in the second
row.

70

www.manharaa.com



Chapter 5. Gibbs Random Field Models

Figure 5.6: Realizations of the finest layer of the multiséaRF model generated from
GRFs with the specified (left) and estimated (right) cligueeptals.
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Figure 5.7: Multiscale GRF modeling of the experimental da)aA reconstruction com-
puted from the multiscale GRF modeling that shows the digfiobs of 5 (blue), LAT
(red), andPLC~1 (green); b) A reconstruction computed form the multiscalRRvmod-
eling that shows the distributions of (blue), LAT (red), andPL.C~1 (green); c) A re-
construction computed from the multiscale GRF modeling shatvs the distributions of
G (blue), p85 (red), and Gab2 (green); d) A reconstructionfmaed form the multiscale
MRF modeling that shows the distributions@f{blue), p85 (red), and Gab2 (green).
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Chapter 6

Conclusion

6.1 Contributions

A novel approach has been described for reconstructingaspelaitionships between three
proteins on cell membranes from samples showing relatipadbetween only two pro-
teins. This approach utilizes a multiscale hidden Markexdoan field model where math-
ematical programming techniques are used to deduce thé&iomad distributions. To our
knowledge, we are the first to use Markov random fields to mthaetpatial distribution
of proteins on cell membranes. The application of our apgreasynthesized data has
demonstrated that the multiscale MRF model is good at cheraictg both short and long
range statistical properties and that the spatial relakiggs among three proteins can be
reliably estimated. The application to experimental datsprovided the first maps of the
spatial relationship between groups of three differemaligg molecules. The ability to
analyze the spatial organization and dynamics of multipdentorane proteins during sig-
naling is a critical step towards a more complete underatgraf the spatial and temporal

regulation of signal transduction pathways.

By exploiting the Markov-Gibbs equivalence, 8-neighborthggstems have been uti-
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lized in the multiscale GRF modeling. By imposing the very ogeble constraint of

statistical isotropy, the number of parameters is reducedize consistency of the model
parameters is improved. Application of the multiscale GRFlei®o synthesized and ex-
perimental data shows that the quality of reconstructislde®en improved. In addition,
it is easier to obtain biological insights when the resuttsiaterpreted in term of clique
potentials. Using clique potentials, combined with MRF mdgs ability to derive con-

fidence intervals, it is possible to provide quantitativeasw@ements of co-clustering for

molecular species.

6.2 Future Research Directions

As shown in the completed work, the interactions among threéins can be reliably
estimated from observations showing interactions betwedy two proteins using the

multiscale models. However, there are still many issue®tadaressed.

6.2.1 Labeling Efficiency

Labeling efficiencys used to denote the percentage of a protein labeled by gotd p
cles in a biological experiment. In the experiments we haweedso far, it is assumed
that all proteins of interest on cell membranes are labejegatd particlesj.e., labeling

efficiencies of gold particles are all 100% . Unfortunatéhg labeling efficiencies in ex-
periments using nanoprobes are typically less than 100%aWecof their smaller sizes,
5nm gold particles have better labeling efficiency than 1@oid particles. For some pro-
teins whose populations are known, we estimated labeliingezfcies using gold particle
labeling data. These experiments have shown that the hagjpefficiencies of 5nm gold
particles are from 70% to 90% while the labeling efficien@&40nm gold particles are

typically less than 50%. We propose to include the labeliifigiency in the observation
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matrices. Consequently, three observation matri@esQ,, andQ,, are written as:

0 0
0 p 0 0
Qr -
0 0
1 1

I®)
Q
|
o o o o

0
0 0
0
1

0 0]
0 p; 00
00
|1—pp 1—pp 1 1]
Wherepf is the labeling efficiency of proteifin experiments where proteiris missing.

Initially, it will be assumed that the labeling efficiencia® known. Quantitative mea-
surements of protein populations and cell surface areaseparformed by our collabora-
tors at the UNM Cancer Research Center, and labeling efficiecaie be estimated using
gold particle labeling data. These labeling efficienciels tven be put into the above ob-
servation matrices and used to model the spatial distabstof proteins. This will allow
us to determine whether the mathematical programming teoba developed in this dis-
sertation will also work for parameter estimation when thieeling efficiencies are not
100%.

Unfortunately, some protein populations are not knownhls tase, labeling efficien-
cies will be treated as hidden data in the modeling and the g@righm can be used to

estimate the hidden process parameters.
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6.2.2 Using the EM Algorithm to Estimate Parameters

When labeling efficiencies are unknown, more informationgsded to estimate the hid-
den process parameters. As before, realizations of the\atigsn process, are called
incomplete data. And the observation matri€gsare also hidden data. It is assumed that

a complete data séb,, Q,.) exists and the complete-data likelihood can be computed as
P(or, QelV) = P(0k|Qs, V) P(Qk|V) (6.1)

whereV is a vector of clique potentials aride {r, g,b}. Note that this complete-data
likelihood is in fact a random variable becaug is unknown and governed by an under-

lying distribution. The hidden process potentials can bemated by

~

V = arg mgxlog[P(ok]Qk,V)P(QHV)]. (6.2)

The EM algorithm is an interactive procedure for solving E®. In this specific case,

each iteration consists of the following two steps.

1. E-step: Calculate the expectationlef P(ox|Qx, V) P(Qk|V) with respect toQy
and conditioned on the observed dataand the current estimalé’ of clique po-

tentials. The expectation is computed as:

Q(V|V') = E [log P(0|Qx, V) + log P(Qx|V)|ok, V']
= E [log P(0x|Qg, V)0, V] + C (6.3)

while C'is an unknown constant.
2. M-step: Compute

Vi = arg max Q(V|VY)

= arg m‘z;me [log P(0x|Qx, V)|ok, V'] (6.4)

76

www.manharaa.com



Chapter 6. Conclusion

The expectation in Eq.6.3 is computed as follows:

Qk

where P(0.,|Qy, V) can be calculated as described in Chapter 5@ |0y, V') is the
posterior distribution of),. given the data and the previous estimaté/of A major dif-
ficulty here is how to specify this posterior distribution.siblg prior knowledge from
biological experiments, mean values and ranges of labeffigjencies can be guessed. It
is reasonable to assume that this posterior distributi@®,as a multivariate Gaussian dis-
tribution. With this assumption, the expectation can bemat®d. An initial set of clique
potentials can be estimated using the method described ipt€@ha by assuming 100%
labeling efficiencies. The EM algorithm can then be used tionesé clique potentials in

the case that the labeling efficiencies are unknown.

6.2.3 Exploring More Observation Matrices

The three observation matrices used in our modeling arec@rgtrained. The constraints
on the observation matrices can be further relaxed to olptaire observation processes.
For example, we could ask our collaborators to carry out exynts where half of the
5nm gold particles are used to label protéinthe other half of the 5nm gold particles
are used to label protei@, and all of the 10nm gold particles are used to label pratein
The experiments are realizations of an observation proghigsh is related to the hidden

process through the following observation matrix:

0000
5 500
Q =
0010
5 5 0 1]

where labeling efficiencies are assumed to be 100%. In thjs wa can obtain more

observation processes and impose more constraints ondtéerhprocess. As a result, the
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guality of hidden process parameter estimates can be iraegrdie propose to use more
observation matrices to improve the modeling quality f@r tiwee protein reconstruction

problem.

Because there are more constraints on the hidden processwdrerobservation ma-
trices are used, we can possibly extend our models to manetihee proteins. We propose
to investigate whether the interactions among more thasetproteins can be reliably es-

timated when more observation processes are introduced.

An observation matrix is a channel over which informationaohidden process is
transmitted,i.e., the hidden random field is observed as a random fiede} over the
observation matrix);. The mutual information fot); is the mutual information of two

random fieldsD andO;, which can be computed as:

I(D;0:) =Y > P(d,0)log %, (6.6)

deD o€0;

whereP(o, d) is the joint probability distribution function @b andO;, andP(d) and P (o)
are the marginal probability distribution functionsiofandO, respectively. We propose to
compute the mutual information for observation matrices @esign observation matrices
with maximum information channel capacity by maximizing tihutual information [39]
for sets of observation matrices. We will use these observatatrices to design particle

labeling experiments to obtain better reconstruction tdractions among proteins.
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Results of the Markov chain modeling

A.1 The first-order Markov chain model
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P P
40885 .36921 17410 .04320 | .40896 .36921 .17415 .04332
12930 52834 10139 77892 | .12922 52832 .10152 .77888
S1119 .08227 24039 .09638 | .31103 .08230 .24050 .09632
15066 .02019 48412 .08151 | .15080 .02018 .48383 .08148
00391 .09946 .08653 .28725 | .00392 .09942 .08651 .28724
16572 34447 52591 53052 | .76580 .34451 .52578 .53048
11284 41860 .01115 .13215 | .11286 .41862 .01119 .13221
A1753 13747 37642 05008 | .11742 13745 .37652 .05007
91308 .01150 .05131 .99800 | .91310 .01149 .05135 .99800
05303 .10345 .70939 .00148 | .05304 .10355 .70931 .00147
02554 81201 .21349 .00031 | .02552 .81186 .21348 .00031
00835 .07304 .02580 .00022 | .00834 .07310 .02585 .00022
92364 .86406 .05311 .32127 | .92364 .86408 .05300 .32098
02656 .10318 .38505 .33645 | .02654 .10320 .38536 .33643
01700 .02302 .00515 .11821 | .01700 .02297 .00525 .11814
03281 .00974 .55670 .22407 | .03282 .00975 .55638 .22445
28942 43960 .26739 59277 | 28941 43961 .26748 .59285
35661 .04516 .31161 .25504 | .35664 .04512 .31159 .25505
06877 .40161 .14996 .10364 | .06877 .40150 .15002 .10363
28520 11364 .27104 .04855 | .28518 11377 .27091 .04846
.85000 .01000 .03000 .20000 | .85001 .00997 .02999 .19997
05000 .50000 .02000 .40000 | .05006 .49973 .01998 .40034
.08000 .32000 .90000 .32000 | .07994 .32014 .90006 .31988
.02000 .17000 .05000 .08000 | .01999 .17016 .04997 .07981
29000 .55000 .03000 .63000 | .28985 .54995 .03003 .63009
31000 .25000 .21000 .05000 | .30998 .25023 .20985 .05005
30000 .14000 .52000 .09000 | .30014 .13990 .52015 .08995
.10000 .06000 .24000 .23000 | .10003 .05993 .23997 .22990

Table A.1: Results for seven experiments of the first-orderkig\achain model P is the
transition matrix used to generate the hidden chaindaisthe estimate computed solely
from the statistics of the observed chains. The chain lenyjth= 7.01 x 107, and the
starting point,S = 1 x 10°.
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1 2 3 4 5 6 7

”f‘";ﬂb(xm?) .037| .018/| .014| .043| .023]| .048| .033

Table A.2: Relative error of estimates for the first-order kbarchain modeling.

A.2 The second-order Markov chain model

P P P P P P P P P P

Drgr | -0342| .0341| .0856| .0862| .0007| .0007| .0449| .0448| .0056| .0056
Dzgr | -4836 .4838| .1061| .1055| .0051| .0051| .1610| .1611| .2886| .2887
pger | -0330] .0331| .1857| .1858| .0770| .0770| .6297| .6297| .0110| .0109
P | -0709] .0708| .0462| .0461| .3153| .3151| .0070| .0070| .6237| .6238
Dgzr | -A1771] . 1771| .4563| .4557| .3132| .3132| .0263| .0263 | .3544| .3544
Doer | 4308|4311 .1070| .1051| .0038| .0038| .0366| .0368 | .0028 | .0028
Daar | -0823| .0821| .1012| .1036| .1565| .1566 | .0468| .0466| .0009| .0007
Drg | -8868]| .8865| .8332| .8337| .6428| .6431| .6621| .6622| .7712| .7711
Pabg | -0234 ] .0236| .1280| .1275| .1991| .1987| .0485| .0485| .0717| .0717
Drag | -3018| .3019| .0470| .0464| .1214| .1214| .2215| .2215| .2443| .2442
Dhzg | -1526] .1528| .6111| .6089| .1217| .1216| .4911| .4913| .1529| .1529
Dzzg | -0996| .0594| 2510 .2538| .2072| .2074| .0717| .0715| .0043| .0042
Dray | 4922|4923 | .6591| .6581| .67/89| .6787| .5125| .5124| .1198| .1198
Dgav | -3442| .3443| .2269| .2259| .1149| .1149| .4691| .4689| .5030| .5033
Pzap | 1559 .1556| .0585| .0605| .0210| .0214| .0019| .0020| .0580| .0579
Draz | 0287 .5281| .3439| .3467| .1220| .1222| .6773| .6777| .1735| .1732
Dgzz | -3714| .3713| .5832| .5863| .1648| .1650| .1969| .1968| .6322| .6298
Dver | -0797| .0777| .0113| .0131| .4806| .4804| .0805| .0770| .0812| .0805
Daax | -0202| .0228| .0616| .0539| .2327| .2324| .0454| .0486| .1130| .1165

Table A.3: Results of five experiments for the second-ordetk®Machain modeling with
symmetry. The chains used in the modeling are of ledgth 7.01 x 10® and the starting
pointisS = 1.0 x 10°.
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o2 (x10%) | 23| 68| .07 | 33| .31

Table A.4: Relative error of estimates for the second-ordarkdv chain modeling.
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